File size: 2,085 Bytes
ea3c274 7761935 ea3c274 7761935 ea3c274 7761935 ea3c274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: openai/whisper-tiny
language:
- ja
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Tiny Japanese Combine 4k - Chee Li
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Japanese Combine 4k - Chee Li
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Meta JSON Japanese Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8869
- Wer: 396.6874
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.441 | 4.1322 | 1000 | 2.4726 | 406.5217 |
| 1.8098 | 8.2645 | 2000 | 2.0185 | 462.4224 |
| 1.2666 | 12.3967 | 3000 | 1.5918 | 404.3478 |
| 0.8324 | 16.5289 | 4000 | 1.2738 | 460.8696 |
| 0.5744 | 20.6612 | 5000 | 1.0687 | 607.0393 |
| 0.3308 | 24.7934 | 6000 | 0.9561 | 532.7122 |
| 0.242 | 28.9256 | 7000 | 0.9024 | 461.0766 |
| 0.1651 | 33.0579 | 8000 | 0.8869 | 396.6874 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1
|