File size: 1,744 Bytes
92229b0
c4cd6b8
92229b0
 
 
c4cd6b8
 
92229b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: openai/whisper-base
language:
- en
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Turbo Five 5K - Chee Li
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Turbo Five 5K - Chee Li

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Google Fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1982
- Wer: 8.3488

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0903        | 1.0560 | 1000 | 0.1948          | 9.9042 |
| 0.0389        | 2.1119 | 2000 | 0.1943          | 9.3442 |
| 0.0212        | 3.1679 | 3000 | 0.1958          | 9.0828 |
| 0.0075        | 4.2239 | 4000 | 0.1961          | 8.4626 |
| 0.0018        | 5.2798 | 5000 | 0.1982          | 8.3488 |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1