--- base_model: openai/whisper-medium datasets: - fleurs language: - en license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Medium English - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: en_us split: None args: 'config: en split: test' metrics: - type: wer value: 7.1528165086447295 name: Wer --- # Whisper Medium English - Chee Li This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.3285 - Wer: 7.1528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.005 | 5.3191 | 1000 | 0.2599 | 6.9576 | | 0.0002 | 10.6383 | 2000 | 0.3051 | 7.1946 | | 0.0001 | 15.9574 | 3000 | 0.3228 | 7.2295 | | 0.0001 | 21.2766 | 4000 | 0.3285 | 7.1528 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1