--- base_model: openai/whisper-large-v3 language: - en license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large Five 5K None - Chee Li results: [] --- # Whisper Large Five 5K None - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1774 - Wer: 10.1251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0557 | 1.0560 | 1000 | 0.1488 | 11.4913 | | 0.0171 | 2.1119 | 2000 | 0.1522 | 9.5367 | | 0.0085 | 3.1679 | 3000 | 0.1630 | 8.6409 | | 0.0015 | 4.2239 | 4000 | 0.1705 | 10.7759 | | 0.0007 | 5.2798 | 5000 | 0.1774 | 10.1251 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1