--- language: - en license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Five - Chee Li results: [] --- # Whisper Small Five - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4348 - Wer: 21.6569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 850 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3047 | 1.0560 | 1000 | 0.4050 | 22.7955 | | 0.1771 | 2.1119 | 2000 | 0.3811 | 21.0509 | | 0.1176 | 3.1679 | 3000 | 0.3864 | 21.3429 | | 0.0852 | 4.2239 | 4000 | 0.3962 | 20.7720 | | 0.0443 | 5.2798 | 5000 | 0.4100 | 21.4523 | | 0.0265 | 6.3358 | 6000 | 0.4234 | 21.3823 | | 0.0254 | 7.3918 | 7000 | 0.4310 | 21.7783 | | 0.0188 | 8.4477 | 8000 | 0.4348 | 21.6569 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1