--- base_model: openai/whisper-base language: - en license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Small Five 20K - Chee Li results: [] --- # Whisper Small Five 20K - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5771 - Wer: 22.0375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.4014 | 1.0560 | 1000 | 0.4369 | 25.7071 | | 0.2677 | 2.1119 | 2000 | 0.3905 | 22.1327 | | 0.1651 | 3.1679 | 3000 | 0.3856 | 21.2139 | | 0.1102 | 4.2239 | 4000 | 0.3920 | 20.4471 | | 0.0514 | 5.2798 | 5000 | 0.4072 | 21.2883 | | 0.0255 | 6.3358 | 6000 | 0.4273 | 21.4687 | | 0.0184 | 7.3918 | 7000 | 0.4442 | 21.6251 | | 0.01 | 8.4477 | 8000 | 0.4635 | 21.3397 | | 0.0051 | 9.5037 | 9000 | 0.4805 | 21.3867 | | 0.0043 | 10.5597 | 10000 | 0.4924 | 21.5508 | | 0.0025 | 11.6156 | 11000 | 0.5054 | 21.5847 | | 0.0023 | 12.6716 | 12000 | 0.5166 | 22.0703 | | 0.0016 | 13.7276 | 13000 | 0.5292 | 21.7509 | | 0.0012 | 14.7835 | 14000 | 0.5375 | 21.7925 | | 0.001 | 15.8395 | 15000 | 0.5480 | 21.9325 | | 0.0008 | 16.8955 | 16000 | 0.5565 | 21.8866 | | 0.0008 | 17.9514 | 17000 | 0.5638 | 21.9423 | | 0.0005 | 19.0074 | 18000 | 0.5709 | 21.9916 | | 0.0005 | 20.0634 | 19000 | 0.5755 | 22.0397 | | 0.0004 | 21.1193 | 20000 | 0.5771 | 22.0375 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1