import math import typing import flash_attn import flash_attn.layers.rotary import huggingface_hub import omegaconf import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from transformers import AutoModel # Flags required to enable jit fusion kernels torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) def bias_dropout_add_scale( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float, training: bool) -> torch.Tensor: if bias is not None: out = scale * F.dropout(x + bias, p=prob, training=training) else: out = scale * F.dropout(x, p=prob, training=training) if residual is not None: out = residual + out return out def get_bias_dropout_add_scale(training): def _bias_dropout_add(x, bias, scale, residual, prob): return bias_dropout_add_scale( x, bias, scale, residual, prob, training) return _bias_dropout_add # function overload def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: return x * (1 + scale) + shift @torch.jit.script def bias_dropout_add_scale_fused_train( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, True) @torch.jit.script def bias_dropout_add_scale_fused_inference( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, False) @torch.jit.script def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: return modulate(x, shift, scale) class Rotary(torch.nn.Module): def __init__(self, dim, base=10_000): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=1): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone()) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # dims are: batch, seq_len, qkv, head, dim self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1) self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1) # This makes the transformation on v an identity. self.cos_cached[:,:,2,:,:].fill_(1.) self.sin_cached[:,:,2,:,:].fill_(0.) return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(qkv, cos, sin): cos = cos[0,:,0,0,:cos.shape[-1]//2] sin = sin[0,:,0,0,:sin.shape[-1]//2] return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin) # function overload def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Layers # ################################################################################# class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.weight = nn.Parameter(torch.ones([dim])) self.dim = dim def forward(self, x): with torch.cuda.amp.autocast(enabled=False): x = F.layer_norm(x.float(), [self.dim]) return x * self.weight[None,None,:] def residual_linear(x, W, x_skip, residual_scale): """x_skip + residual_scale * W @ x""" dim_out, dim_in = W.shape[0], W.shape[1] return torch.addmm( x_skip.view(-1, dim_out), x.view(-1, dim_in), W.T, alpha=residual_scale).view(*x.shape[:-1], dim_out) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True)) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp(- math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device) if t.ndim == 1: t = t.unsqueeze(1) args = t.float() * freqs[None, :] #args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, cond_size): super().__init__() self.embedding_table = nn.Embedding(num_classes + 1, cond_size) self.num_classes = num_classes # TODO think of initializing with 0.02 std deviation like in original DiT paper def forward(self, labels): embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core Model # ################################################################################# class DDiTBlock(nn.Module): def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4, dropout=0.1): super().__init__() self.n_heads = n_heads self.norm1 = LayerNorm(dim) self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False) self.attn_out = nn.Linear(dim, dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.norm2 = LayerNorm(dim) self.mlp = nn.Sequential( nn.Linear(dim, mlp_ratio * dim, bias=True), nn.GELU(approximate='tanh'), nn.Linear(mlp_ratio * dim, dim, bias=True)) self.dropout2 = nn.Dropout(dropout) self.dropout = dropout self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True) self.adaLN_modulation.weight.data.zero_() self.adaLN_modulation.bias.data.zero_() def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference def forward(self, x, rotary_cos_sin, c, seqlens=None): batch_size, seq_len = x.shape[0], x.shape[1] bias_dropout_scale_fn = self._get_bias_dropout_scale() (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2) # attention operation x_skip = x x = modulate_fused(self.norm1(x), shift_msa, scale_msa) qkv = self.attn_qkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.n_heads) with torch.cuda.amp.autocast(enabled=False): cos, sin = rotary_cos_sin qkv = apply_rotary_pos_emb( qkv, cos.to(qkv.dtype), sin.to(qkv.dtype)) qkv = rearrange(qkv, 'b s ... -> (b s) ...') if seqlens is None: cu_seqlens = torch.arange( 0, (batch_size + 1) * seq_len, step=seq_len, dtype=torch.int32, device=qkv.device) else: cu_seqlens = seqlens.cumsum(-1) x = flash_attn.flash_attn_interface.flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, seq_len, 0., causal=False) x = rearrange(x, '(b s) h d -> b s (h d)', b=batch_size) x = bias_dropout_scale_fn(self.attn_out(x), None, gate_msa, x_skip, self.dropout) # mlp operation x = bias_dropout_scale_fn( self.mlp(modulate_fused( self.norm2(x), shift_mlp, scale_mlp)), None, gate_mlp, x, self.dropout) return x class EmbeddingLayer(nn.Module): def __init__(self, dim, vocab_dim): super().__init__() self.embedding = nn.Parameter(torch.empty((vocab_dim, dim))) torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5)) def forward(self, x): return self.embedding[x] class DDitFinalLayer(nn.Module): def __init__(self, hidden_size, out_channels, cond_dim): super().__init__() self.norm_final = LayerNorm(hidden_size) self.linear = nn.Linear(hidden_size, out_channels) self.linear.weight.data.zero_() self.linear.bias.data.zero_() self.adaLN_modulation = nn.Linear(cond_dim, 2 * hidden_size, bias=True) self.adaLN_modulation.weight.data.zero_() self.adaLN_modulation.bias.data.zero_() def forward(self, x, c): shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2) x = modulate_fused(self.norm_final(x), shift, scale) x = self.linear(x) return x class DIT(nn.Module, huggingface_hub.PyTorchModelHubMixin): def __init__(self, config, vocab_size: int, mlm_model_path): super().__init__() if type(config) == dict: config = omegaconf.OmegaConf.create(config) self.config = config self.vocab_size = vocab_size self.vocab_embed = EmbeddingLayer(config.model.hidden_size, vocab_size) self.sigma_map = TimestepEmbedder(config.model.cond_dim) self.rotary_emb = Rotary( config.model.hidden_size // config.model.n_heads) blocks = [] for _ in range(config.model.n_blocks): blocks.append(DDiTBlock(config.model.hidden_size, config.model.n_heads, config.model.cond_dim, dropout=config.model.dropout)) self.blocks = nn.ModuleList(blocks) self.output_layer = DDitFinalLayer( config.model.hidden_size, vocab_size, config.model.cond_dim) self.scale_by_sigma = config.model.scale_by_sigma self.mlm_model = AutoModel.from_pretrained(mlm_model_path, device_map='cpu') def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference def forward(self, indices, sigma): x = self.vocab_embed(indices) c_sigma = F.silu(self.sigma_map(sigma)) rotary_cos_sin = self.rotary_emb(x) with torch.cuda.amp.autocast(dtype=torch.bfloat16): for i in range(len(self.blocks)): x = self.blocks[i](x, rotary_cos_sin, c_sigma, seqlens=None) x = self.output_layer(x, c_sigma) # Extract membrane-specific embeddings from final encoder layer # of fine-tuned ESM model # with torch.no_grad(): # membrane_embedding = self.mlm_model(input_ids=, attention_mask=).last_hidden_state.squeeze(0) # Fuse MLM embeddings with conditioning vector # c = torch.cat([c_sigma, membrane_embedding], dim=-1) # print(membrane_embedding.size()) # print(c_sigma.size()) return x