sgoel30 commited on
Commit
d8ed92a
1 Parent(s): 5acf74e

Upload 34 files

Browse files
Files changed (35) hide show
  1. .gitattributes +3 -0
  2. benchmarks/.DS_Store +0 -0
  3. benchmarks/Generation/.DS_Store +0 -0
  4. benchmarks/Generation/ProtGPT2/protgpt2_finetune.py +70 -0
  5. benchmarks/Generation/ProtGPT2/protgpt2_generate.py +55 -0
  6. benchmarks/Generation/ProtGPT2/protgpt2_generated_sequences.csv +101 -0
  7. benchmarks/Generation/ProtGPT2/protgpt2_test.txt +0 -0
  8. benchmarks/Generation/ProtGPT2/protgpt2_train.txt +0 -0
  9. benchmarks/Generation/ProtGPT2/run_clm.py +657 -0
  10. benchmarks/Generation/Visualize/analyze_mdlm_denovo_gen.py +7 -0
  11. benchmarks/Generation/Visualize/esm_umap.png +0 -0
  12. benchmarks/Generation/Visualize/esm_umap.py +111 -0
  13. benchmarks/Generation/Visualize/mdlm_de-novo_generation_results.csv +101 -0
  14. benchmarks/MLM/config.py +14 -0
  15. benchmarks/MLM/data_loader.py +48 -0
  16. benchmarks/MLM/esm_utils.py +16 -0
  17. benchmarks/MLM/mlm_generate_utils.py +108 -0
  18. benchmarks/MLM/mlm_lowercase_results.csv +0 -0
  19. benchmarks/MLM/mlm_motif_benchmarking.py +39 -0
  20. benchmarks/MLM/mlm_uppercase_results.csv +0 -0
  21. benchmarks/MLM/model.py +65 -0
  22. benchmarks/MLM/pretrained_models.py +12 -0
  23. benchmarks/MLM/screen_mlm_cosine_hamming.py +17 -0
  24. benchmarks/MLM/train_and_test.py +184 -0
  25. benchmarks/Supervised/.DS_Store +0 -0
  26. benchmarks/Supervised/Localization/cell_localization_predictor.py +224 -0
  27. benchmarks/Supervised/Localization/process_cell_local_data.py +12 -0
  28. benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv +0 -0
  29. benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv +3 -0
  30. benchmarks/Supervised/Membrane Type/membrane_type_predictor.py +226 -0
  31. benchmarks/Supervised/Membrane Type/membrane_type_test.csv +0 -0
  32. benchmarks/Supervised/Membrane Type/membrane_type_train.csv +3 -0
  33. benchmarks/Supervised/Membrane Type/split_membrane_type_data.py +15 -0
  34. benchmarks/Supervised/Membrane Type/unsplit_membrane_type_all.csv +3 -0
  35. benchmarks/Supervised/Solubility/solubility_transformer.py +353 -0
.gitattributes CHANGED
@@ -38,3 +38,6 @@ benchmarks/DeepLoc/membrane_type_train.csv filter=lfs diff=lfs merge=lfs -text
38
  benchmarks/DeepLoc/OG_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
39
  data/uniref/100k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
40
  data/uniref/200k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
38
  benchmarks/DeepLoc/OG_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
39
  data/uniref/100k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
40
  data/uniref/200k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
41
+ benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv filter=lfs diff=lfs merge=lfs -text
42
+ benchmarks/Supervised/Membrane[[:space:]]Type/membrane_type_train.csv filter=lfs diff=lfs merge=lfs -text
43
+ benchmarks/Supervised/Membrane[[:space:]]Type/unsplit_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
benchmarks/.DS_Store ADDED
Binary file (6.15 kB). View file
 
benchmarks/Generation/.DS_Store ADDED
Binary file (6.15 kB). View file
 
benchmarks/Generation/ProtGPT2/protgpt2_finetune.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import os
3
+ import subprocess
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+
6
+
7
+ # Format sequence inputs based on ProtGPT fine-tuning requirements
8
+ def modify_sequences(sequence):
9
+ modified_sequence = sequence.upper()
10
+ modified_sequence = '\n'.join([modified_sequence[i:i+60] for i in range(0, len(modified_sequence), 60)])
11
+
12
+ fasta = "<|endoftext|>"
13
+ modified_sequence = fasta + "\n" + modified_sequence
14
+
15
+ return modified_sequence
16
+
17
+ # Function to save sequences to txt files
18
+ def to_txt_file(df, filename):
19
+ with open(filename, 'w') as f:
20
+ for sequence in df['Sequence']:
21
+ f.write(sequence + '\n')
22
+
23
+
24
+ # Modify the sequences
25
+ path = "/workspace/sg666/MDpLM"
26
+
27
+ train = pd.read_csv(path + "/data/membrane/train.csv")
28
+ val = pd.read_csv(path + "/data/membrane/val.csv")
29
+ test = pd.read_csv(path + "/data/membrane/test.csv")
30
+
31
+ train = pd.concat([train, val])
32
+
33
+ train['Sequence'] = train['Sequence'].apply(modify_sequences)
34
+ test['Sequence'] = test['Sequence'].apply(modify_sequences)
35
+
36
+
37
+ # Save the modified sequences as txt files
38
+ to_txt_file(train, path + '/benchmarks/Generation/ProtGPT2/protgpt2_train.txt')
39
+ to_txt_file(test, path + '/benchmarks/Generation/ProtGPT2/protgpt2_test.txt')
40
+
41
+
42
+ tokenizer = AutoTokenizer.from_pretrained("nferruz/ProtGPT2")
43
+ model = AutoModelForCausalLM.from_pretrained("nferruz/ProtGPT2")
44
+
45
+ finetune_protgpt2_command = [
46
+ "python", "run_clm.py",
47
+ "--model_name_or_path", "nferruz/ProtGPT2",
48
+ "--train_file", "protgpt2_train.txt",
49
+ "--validation_file", "protgpt2_test.txt",
50
+ "--tokenizer_name", "nferruz/ProtGPT2",
51
+ "--num_train_epochs", "10",
52
+ "--logging_steps", "1",
53
+ "--logging_dir", "test",
54
+ "--do_train",
55
+ "--do_eval",
56
+ "--output_dir", "/workspace/sg666/MDpLM/benchmarks/Generation/ProtGPT2/finetuned_models",
57
+ "--overwrite_output_dir",
58
+ "--learning_rate", "3e-04",
59
+ "--per_device_train_batch_size", "2",
60
+ "--evaluation_strategy", "epoch"
61
+ ]
62
+
63
+ try:
64
+ result = subprocess.run(finetune_protgpt2_command, check=True, text=True, capture_output=True)
65
+ except subprocess.CalledProcessError as e:
66
+ print("Command failed with the following error:")
67
+ print(e.stderr) # Print standard error output
68
+ print("Command output:")
69
+ print(e.stdout) # Print standard output if needed
70
+
benchmarks/Generation/ProtGPT2/protgpt2_generate.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import math
4
+ import torch
5
+ import sys
6
+ import pandas as pd
7
+
8
+ # Function to calculate perplexity of each generated sequence
9
+ def calculate_perplexity(sequence, model, tokenizer):
10
+ sequence = "<|endoftext|>" + sequence + "<|endoftext|>"
11
+ input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0)
12
+ input_ids = input_ids.to(device)
13
+ with torch.no_grad():
14
+ outputs = model(input_ids, labels=input_ids)
15
+ loss, _ = outputs[:2]
16
+ return math.exp(loss)
17
+
18
+ if __name__ == "__main__":
19
+ device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
20
+ path = "/workspace/sg666/MDpLM/benchmarks/Generation/ProtGPT2"
21
+
22
+ # Load fine-tuned model and tokenizer
23
+ model_path = path + "/finetuned_models/checkpoint-4510"
24
+ model = AutoModelForCausalLM.from_pretrained(model_path)
25
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
26
+
27
+ # Generate sequences
28
+ protgpt2 = pipeline('text-generation', model=model_path, device=device)
29
+ sequences = protgpt2("", max_length=100, do_sample=True, top_k=950, repetition_penalty=1.5, num_return_sequences=100, eos_token_id=0)
30
+
31
+ # Store generated sequences and their associated perplexities
32
+ generated_sequences = []
33
+ perplexities = []
34
+
35
+
36
+ # Calculate PPL for sequences
37
+ for item in sequences:
38
+ raw_sequence = item['generated_text']
39
+ ppl = calculate_perplexity(raw_sequence, model.to(device), tokenizer)
40
+ generated_sequences.append(raw_sequence)
41
+ perplexities.append(ppl)
42
+
43
+ # Clean the generated sequences
44
+ cleaned_sequences = [seq.replace('\n', '').replace('<|endoftext|>', '') for seq in generated_sequences]
45
+
46
+ # Create df with cleaned sequences and perplexities
47
+ df = pd.DataFrame({"Sequence": cleaned_sequences, "Perplexity": perplexities})
48
+ df.sort_values(by='Perplexity', inplace=True)
49
+
50
+ # Save results
51
+ df.to_csv(path + "/protgpt2_generated_sequences.csv", index=False)
52
+
53
+ # View the average de novo generation perplexity
54
+ avg_generation_ppl = df.loc[:, 'Perplexity'].mean()
55
+ print(f'Average de novo generation perplexity: {avg_generation_ppl}')
benchmarks/Generation/ProtGPT2/protgpt2_generated_sequences.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Perplexity
2
+ LAPSVVTGVAQSSPLTIVTNPKEPRQPVPASDGADYLKTIPGFAVIRNGGSNGDPVLRGMFGSRLNILTNGGMMLGACPNRMDAPTSYISPETYDKLTVIKGPQTVLWGPGASAGTILFEREPERFGELGSRVNASLLAGSNGRFDKVLDAAAGNRLGYLRFTGNHAQSDDYEDGAGNTVPSRWKKWNGDVAVGWTPDEDTLIELTAGKGDGEARYAGRGMDGSQFKRESLGLRFVKSNVSDVLEKVEAQVYYNYADHIMDNFRLRTPDPSMPMT,2.6532732777535712
3
+ MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQNLNGLDNLLYMSSTSDDSGNATITITFAPGTNPDIAQVQVQNKLSLATPILPQAVQRQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLGIKLATG,2.829348107084168
4
+ MAYRSTTLLALLALVLLYLVSGALVFRALEQPHEQQAQRELGEVREKFLRAHPCVSDQELGLLIKEVADALGGGADPETQSTSAWDLGSAFFFSGTIITTIGYGNVALRTDAGRLFCIFYAAXFGIPFTLLFLTAVGDRLGSSLRHGIGHIEAIFLKWHVPPELVRVLSEMLFLLVGCLLFVLTPTFVFCYMEDWSKLEAIYFVIVTLTTVGFGDYVAGADPRQDSPAYQPLVWFWILLGLAYFASVSAML,3.119025307842878
5
+ MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQQMNGLDGLRYISSNSAGNGQASIQLNFEQGVDPDIAQVQVQNKLQLAMPLLPQAVKEQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLG,3.775355043694786
6
+ LFLTMAEAQLRYKTTEECLAYFGVSETTGLTPDQVKRHLEKYGHNELPAEEGKSLWELVIEQFEDLLVRILLLAACISFVLAWFEEGEETVTAFVEPFIILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILSIKSTTLRVDQSILTGESVSVAKSSDAVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVSTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICIAVWLINIGHFNDPVHGGSWI,4.136701078251139
7
+ MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQNMNGIDNLMYMSSNSDSTGTAQITLTFESGTDADIAQVQVQNKLQLAMPLLPQAVQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLG,4.210716900525416
8
+ MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQQMNGLDGLRYISSNSAGNGQASIQLTFESGTDADIAQVQVQNKLQLAMPLLPQEVAQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPAS,4.526996795741569
9
+ MLKIIIPTTMLLPMTWMSKHNMIWINATVHSLLISLISLSLLNQLGENSLNFSLTFFSDSLSAPLLVLTTWLLPLMLMASQSHLSKETTTRKKLYITMLLILLQLFLIMTFTATELILFYIFESASLPTLLMITRWGNQTERLNAGLYFLMYTLAGSLPLLVALVYIQNTTGSLNFLIIHWSTHTSASFVSQTLLLMAWMAAMAVMAKMPLYGVHLWLPKAHVEAPIAGSMVLAAVLLKLGGYGMLRITTILNPLTNYMAYPFLMLCLWGMI,4.629232424547782
10
+ AKFINRWLFSTNHKDIGTLYLLFGAWAGMVGTALSLLIRAELGQPGTLLGDDQIYNVVVTGHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSFLLLLASSMVEAGAGCGWTVYPPLAGNLAHAGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMSQYQTPLFVWSVMITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPXVLILILPFFGIVTEASAIPRIFNWMVTFHGQLMYHHMWIIGVL,5.0608380016313275
11
+ LVEKDPIKTSFEKWAKPGHFSRTLAKGPNTTTWIWNLHADAHDFDSYTSDLEEISRKVFSAHFGHLAVVTIWLSGMIFHGAKFSNYEAWLSDPLNVRPSAQVVWPLVGQDILNGDMGDGTYNGFQVMTSGLFQLWRASGITNEYQLYCTAIGGLVMAALMLFAGWFHYHKAAPKLAWFQDVETALNHHLSGLLGLGCLSWAGHQIHVSLPVNKLLDAGVAAKDIPLPHEFILDPAKFASLLPGLTQGLTPFFTLNWSEYSDFLTFKGGLNPVTGGL,5.597917119515088
12
+ MVRKVYVTLQGKVQGVFFRAHTQATAKQLGVVGWVRNTSDGTVEGEAQGPADKVDEMINWLHRGPPQAQIESHEFNSEKKELEAFSSFHIRY,5.635017933300935
13
+ EFGFWEIKFPEYLKGRPTTGRPEWVQDVDLVNKWAVPGLNPPHHFSPPVNLTGVEDTLPVSWVMVSMVVGFVLIVATAGNILVIIAVFTSRALKAPQNLFLVSLASADILVATLVIPFAMANEVMGYWYFGKAWCEIYLALDVLFCTSSAWHLCAISLDRYWSITQAIEYNLKRTPRRTKAIIITVWVISAVISFPPRCEINDQKWYYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRDLSRKSGRPSLLSEVHAAKSLAIL,6.370992471309986
14
+ MVYVSRISVFAFLGALASVAYGQVTPPNFGTEQDRVNFTKQIVPVLKEKCVVCHGPDKTKGKLRLDLRIEAFKGGESGESIDVIPGDPENSELLERITSKDPEFRMPPKSEHKPLTEAEIALLKQWILEGAKYDPAWAFTPPKRTDLPKVKRDEWAKNDVDRFILAKLESEGLTPNPEADKATLIRRVTLDLTGLPPTPAEVDAFLADKSPNAYEKVVDRLLASPHFGERWGRHWLDVARWAESNGFERNTIRNIWSYRDWVIKALNDDVPYDQFTVEQL,7.0499259667086145
15
+ SSNAKTVLITGGTGFVGRALVKRLLSTTKHTIVVPYREEADLHDVKVLQVKGDLRDAASLDAAFEGVDCVFHLASYGMSGPEMFELNVEGTRNVVEACLRHGVRRLIHVSSIAVMGEPSDHPRREADESLPARQATAYAKSKVEAERIVLEANGSDGLETVVVRPPMVWGPGDTQFLPRLVRMARRGLRPVIGNGKSLVSMVYIDNLVDGLIAAMDHPEARGKTYFLSNDGHASQREFIETVARAIGRPAPKLTLPVPVLYWAARLLG,7.429969652690046
16
+ SPELIEQLLQNYLQLPDAEKRKVADQLQTSNIRYCYLLASEKGWLDRVESCLAAEGCDVLQPDHTGRNLLQVVASVSPDHTARLIRALLARGADVHAQDSLGNTVLHILILQPNKTFACQMYNEILILGAKLCPTVNLEAVLNHQGLTPFKLAGVEGNTVMFQHLMQKRKHVQWTCGPLTSTLYDLTEIDSSGDDQSLLELIVTTKKREARQILEQTPVKELVSLKWKRYGRPYFCVLGAIYILYIICFTMCCVYRPLKPRITNRTNPRDNMTSLEL,7.910941817905356
17
+ ADVNLNARDLHGMTPLHLAAKNGHDKVVQLLLKKGALVNIQDKLGSTPLLEAIRGRREDTVKLLVEHGADIRAQDSLGNTVLHILILQPENSTSLKFAEMLYDMILLRSGTWELETTQPNDGLTALQLAAKMGKAEILKYILSREIKEKPLRSLSRKFTDWAYGPVSSSLYDLTNVDSSGNTVLHAMIMVADNTPQNSRFVKQMYNLLLSKGARLCPNVPNHQGLTPFKLAGVEGNIVMQEILRGTTISIPFTCITCGKKDTRFRGMSCEN,8.179497248919981
18
+ DPFNNFFRRSKIAVCGLVFFVLFIIYMVLGSMIFSAIERDHEQQAQRELGEVREKFLISHPCVSDQELGVLIEEVADALGGGADPETQSTSAWDLGSAFFFSGTIITTIGYGNVALRTDTMGRLFCIFYALVGIPLFGILLAGVGDRLGSSLRHGIGHIEAIFLKWHVPPGLVRVLSAMLFLAIGCLLFVTLPAYVFSHMEDWSKLEAIYFVIVTLTTVGFGDYVAGADPRQDSPQYQPLVWFWILL,8.306921086116862
19
+ GPQSFVHFTKQSLALIEQRIAERKSKEPKPSSDLEAGKQLPFIYGDIPPGMVSEPLEDLDPYYADKKTFIVLNKGKTIFRFNATPALYMLSPFSPLRRISIKILVHSLFSMLIMCTILTNCIFMTMNNPPDWTKNVEYTFTGIYTFESLVKILARGFCVGEFTFLRDPWNWLDFVVIVFAYVTEFVVAEFVSFSALRAFRVLRALKTISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGLQLFMGNLRKKCFFPDG,8.471762198050271
20
+ MLKIIIPTTMLLPMTWMSKHNMIWINATVHSLLISLISLSLLNQLGENSLNFSLTFFSDSLSAPLLVLTTWLLPLMLMASQSHLSKETTTRKKLYITQLILLQLFLIMTFTATELILFYIFESATLLPTLLIILRWGYQPERLQAGLYFLFYTLIGGVLVLLSILMIYVNTNSLLIHTLPMFNSTMETSLYTKIMWFACMMAFPTKMGLFPIHMWLPVVHSESPLAGSCILAGILLKLGGYGMMRVVTILNPLTNYMAYPFLML,8.583127806228307
21
+ MVLRLVVLALLCWTPGLWAQQADTLTLDEVVVTATRSEQNLQDVPASVSVITAEDLQRQAPRTLGEALRYVPGVFLDGTGRTNGQDINMRGYDHRGVLVLVDGIRQGTDTGHLNGTFLDPALIKRVEIVRGPSAALYGNGAAGGVVNFITRQPSDQLTGSVRLNTSLPQHDGDNSQQFYSLMAGNRLGEEGKLGMLASFSRQEKGQARDGAGNDIASLDEDSLSGKLLWQLTPEQQLDFSLDHYRFKTNAPHNPVNTDFTRHTRQESDSTVRRFFNQVQ,10.282136779067205
22
+ RPLVAIDFGTTYSGYAFSFKNQPETITLHWNSEISKALRKPTVLLIDSNMKEVAFGYEAENKFATLALDAEEKHFFFEKFKMALYDKNDRSILPSMRSANGTEKKAIDVFAEAIRYFKDHALKTINSTYPIDKQDLLWSVTVPSDWDARSKEFMRQAAVKAGLGEASLASEPEAASMYCVEHEVNKFGDEIKSGTKFLVVDVGGGTVDITVHEVLENNHLKELYKASGGPYGSVGIDQEFMKLFQLIVGAEAIEQFKIK,11.589466291126676
23
+ MKVSVIIPTYNERENLEELFSRIDQALQGLNYEIVVVDDDSPDRTWEKAQELSSKYPIKVCRRTKEKGLSSAVIRGFKEASGDVFVVMDADLQHPPEVIPKLIEAIKNGSDIAIGSRYVKGARVENWPFYRKLISKGALVVTKIPLKDLKDMRDFACGFIAIKREVIEKIEFDENLTYGKILKILKYCWGGFSKVVEVPFTFGIRARGESKLKGKTIFEYLRHIWSLNYTFFRILKLIFALGFTFFGVSLAYLTLVLMEKYFLWYIPGWAN,12.090375297427133
24
+ PGMQLNEFSSSGLGRAYSGEGAIADDAGNVSRNPALITMFDRPTFSAGAVYIDPDVNISGNSPLGAPGGTPSDREMKLVPTSHIALPINDRLAFGFAAYSNFGLATDYGDTFVGSTTPTDLEMKLNSLSIGGNAEITDQLSFGASITYQRAKIERFAGDLGQLVAGQIMQSPAGQTQQALLQAQSQGNLGSALAYANGIDSNTKIAHLNGNQWGYGWNAGILYELDKNNRYALTYRSEVKMTFKGNYSNDMPGYYEMNVPAWHNVSLYHE,12.173339409793382
25
+ DASRVYYEDRSVVKEDGSVVKEGPFDLQSTLTLSGVVRDYASGTPLADAEITLTGPAFRAHTNSYGKFVFEGLAAGTYTLSVSRFGYEPVSETIAVSAGQTVESNVALFALASEVEILEVTADADPVFNTGDVATSVGTREMKEIPTVVGDVDVIKSLQLLPGVASAGEGTSGFYVRGGGIDQNLYLLDNIPVYNVGHLFGFFSTFNSDAIKDVTLYKGGVPARYGGRLSSVLDITMKEGNSDKLSGTASIGLLPASAKLQGPI,12.228122271950522
26
+ GAVIDLSTATFDFGGSYTGVAVGDTITAVVTAPTEDDYVFQWFKDNVLQSGATGNSYTLTAAEAGKAIKVVVSGSKSGYTSTAKTAAVTTAITASSLTLTADKTKLTVGDTVTLTASLSDKNGNAVTGRTVKWSSSNTAVATVSSSGLVTGVAAGSATITASAEGQNGNGTANITVVAASVSSISLSPASASVAVGATQQFTASGYDSSGNVVTSGRVVTWASSNTSVATVSASGLVTAVAAGTATITVTSGGKSGNATVTVTAATLSSLSVSSSNL,12.23423450162324
27
+ MQTYNNPEVTYDWWAGNARFANLSGLFIAAHVAQAALIMFWAGAFTLYEISWLTADQSMGEQGLILLPHLATLGLGVGDGGQVTDTFPFFVVGAVHLIASAVLGAGALFHTFRAPSDLAAASGAAKRFQNFNPDLSKLGFISRHTHAAKPELWSQLIGGKHKTTTGFAWVGVANPDGSITGMGTAGIQVKQAEGVTVGLAHYIWPLIGAAALAATICFFGYNSVITDIAYPEKKLEAVTFGYQTQAFDAFTQAGQVIGSTT,12.368396953842797
28
+ AEGIRFAIVDEVDSILIDEARTPLIISGQAEDRTKELYKTLTRVLKSLEGGDYSVDLKNKKVSLTEKGVERTEKLLREAGIISDGTDNLYVVGAIFHAQKVATGKDYLFRKIVEKGRVEYTIDEKLKQVVIVDEFTGRMMPGRRYSDGLHQAIEAKEGVKVQRESKTLATITYQNYFRMFKKIMKLAGMTGTAETEAEEFKKIYNLDVVVIPTNEPMKRQDHSDQVYKTKREKYNAVLKEIEELYKKGQPVLVGTTSVEASEFLSNLLKKRKIPHNVLNAKPHAREAEIIAQAGRKG,12.697313288610662
29
+ MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQVIEQAMNGVDNLMYMSSNSDSTGTATITLTFESGTDADIAQVQVQNKLQLAMPLLPQAVQQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMLIRMKPDLLNKFGVTANDVISALQAQNSQVEAGSIGQLPTLPGTPLQLSITAQSQLSSEQEYGDIMLRVNQDGSRVLLRDVAKIELGGENYDIIAE,12.907199708267516
30
+ DPLYYTNNGGLGFVLSALFGYIWWGYKSGTPKEVRSEAKYRMLTVVVPCYNEEKTIGRTLCSLLESDYPEDKLQIICVNDGSKDKTLKELEDFELRDVPLVVIDQENGGKARALNAGIDAASYEYFACVDADSQVEKDSLKKMVHHFADPSVGCVAGRVKIGNRWSWISRLIDLIQYLIAFNIGRRGINSITVVPGAIGAYRVSAIKKAGGFSGKTMTEDLDLTIAILRAGYKVVYEPEAICWTDVPETLKGFTRQRFRWTYGTMQ,12.993370901156627
31
+ DISAEDRMWSDAEKRMEWQRIDRQVANRKSHGKRGLLSRIFGWIFRRNMDEKALKLLPHIKCYTPAEIANAIQSMTPEDLQRYELRASMFSLADKSNSGTISLTEFRNILECLGVQMSPTELQTLFQVCDRDQNDMINFNEFANRFHEPAKEIGFNVAVLLTNLSEHVPHDPRLRNFLELAESVLNYFQPFLGRIEIMGSAKRIERVYFEISESSRTQWEKPQVKESREFRTMQEIYNHIYYHTKQKENENVQRNAERWKMIEENKL,13.119829828981848
32
+ SDITRLIVLVGTTLGVVLFLALAVWIVKSFWSPYQEINDWALALTIVDVLVVGVPAALPSTVTVTMALGAAYLAKKQALVKKLPIVESLSGVEILCSDKTGTLTKNKLSLQGAWLPGSEKPEQISGLVPEGSRQNITKCIHIAVLCNRASYKDGKLVGTPTEKAILKGLECWGVGYGEMRKKYPLVHQIPFNSTNKFQLSIHDKDNRYLLVMKGAPERVLEKCSTVLLQGKEQPLDEQWHTAFQTAYLSLGGLGERVLGFCQLYLSE,13.625918655212923
33
+ MEVTLFALLALVVASAIIAWGPVTKPLHPHEALVDVGGHKMHYICQGKGSPTVILEAGGGGGSIEWGWVQPQVAAVSRVCTYDRAGYGWSDPAPHARDAGIVAEELHRLLRAAQVPGPYVLVGHSIGGFNTLHFAARYPQDVAGLVLVDATHEDQYRRWKGYEQEMAPFTSGQALDNLAANVRVMESLPPVDAGKVRDLPVLVLSAGREHPPFDMKLYREQWQREVVDLSNVSDRQKHIVADRSGHHIQFDEPDLVVAAIRE,14.117540370332351
34
+ MDYHEDDKRFRREELCREAEFLKLKMPTKKVYHISETRGLLKTINSVLQKITDPIQPKVAEHRPQTTKRLSYPFSREKQHLFDLTDRDSFFDSKTRSTIVYEILKRTTCGITSLLANGIYWLAISTPTINEYPSFLSPSLYAAVLPFTFGFVVSFITLPRKALEYIEQNGQGKAAVHHHTHTHDHDAGDVKIVVNDKDLESHVVAGALMFVAALFSLVFHQWWSDYCDVAYTVFIRVRDVIFGHVKWT,14.986517088631075
35
+ PSNISAWWNFGSLLGACLILQITTGLFLAMHYSPDTTTAFSSLSHICRDVNFGWFIRNLHANGASFFFICIFLHIGRGLYYGSYLYKETWNTGVILLLTVMATAFMGYVLPWGQMSFWGATVITSLAVYLPWWGQHVQKLLFQLIPALLVLLTAWTPFLIGYTLIRETTETESTNYGTPLRLHRIISHHLLLLRAVAXXXXXXXXXXXXXXXXXXEIKAAFWSVFHFILPFMATALAAPRSLLLDEANSTNTLVTTNLIFNFIFFLLPIFPATLSMFSPNLLGDPENFTPANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALAASVLILFLIPFLHKSKQRSTMTF,15.230674054330438
36
+ SRTSELAVGIFVIIFGIALFFLAMKVSGLVGTNLSDGYTMKAQFDNVNGLKPRAKVTMSGVTIGRVDSITLDPVTRLATVTFDLDGKLTSFNAEQLKEVQKNALDELRYSSDYTQATPAQQMKACSEQMMTLLAPQQKEKKTLEVGDIIATSKSSVIYNDMSTYLNDLIGDLGTIASGVNELWPTLQANFSTVKTMAQNLLTANQQLPQLLGNVQTTSQLLAQDNNNFNKLVTDFALTIDALNAVVSKSGANLDTAIATANDLNTVLTENRQ,15.441068484289472
37
+ DDVTVVYQNGLPVISVRLPSRRERCQFTLKPISDSVGVFLRQLQEEDRGIDRVAIYSPDGVRVAASTGIDLLLLDDQLIIREKYQIFINDMSPGAKVAQTAPAREIKWDHEALTEELTYEGQSEKLRDKDRTEVRRTMLNLERRLSDIRRQLAPLEKVRIEISRKMEDKTIQSYALWLMLAVVVCLMGLAWWQVLASLATFCVAVIIMVFVGRNWSAVLQRRRKRMGAEELRHRAYQTHQCHLCAICFTNQKMATLVPCGHVFCEECIKQHL,17.259236085949127
38
+ DNTTNIVHVPVHYVFIMALPIIMCILGLLLNVLALWVFYGHMKRTTSVVYVINLAIADLLFVLSLPMYIHYYFNKTHWVFGELLCRITGTLFYMNTYCSILFLTCISIHRFLGVCYPFRLNLVKRNYAVCVSVGVWAFVMLACMPTLVFNQTEDYEGNRTICYDHLEDAQRHWALYLQVKVNVFVIGFLIPFLIITFCYSQIVATLLKVEANLAKKKSKAIRLVLTVVTVFVLSQFPYNFILLAKTIKLQQINSSCEFEKIIE,17.688518287684857
39
+ MDYHEDDKRFRREELCREAEFLKLKMPTKKVYHISETRGLLKTINSVLQKITDPIQPKVAEHRPQTTKRLSYPFSREKQHLFDLTDRDSFFDSKTRSTIVYEILKRTTCGITSLLANGIYSAAYPLHDGDYEGDNVEFYGDYTIHAGDPENGGQCVVITLTDYGNYEPFYSASLEFSRKHFGFSALSVQCELSDVQSFTAVKQQFINLLSSRAPITVRKFVSPEFPRNSDSHDIFSLSCDVSNTGHVTAVTCQVSARFLTRYLTD,17.749448694031326
40
+ MDNKLTLALAAIMVVLIAFVGINVMNNVNTNPTVVKTATVERGEYVERVDATGKVVAAQSTDLSFPATGEVTWLKVKVGDRVSKGQLLAELDTTDLEAQKNLALSQLEQSRASLALTRQTLARQQALAQTQAVSQQDLDNATNALRVQEAQLNQLRSGSRPEDIAAAQSQLRMAQDDLNRLRNGSRSEELRSLQAQLDVDKAKLNWDQKIVRRNQVRAPFAGVIAERLAEPGALVSPSQPILSLVADDNLEIEANVSEADILHLKPGQKAWFT,18.826645316378666
41
+ MVSVIIPAYNEEKYLEKCLESVRNQTYKNLEIILVDDGSKDKTLEIAKEYAKKDERVKVVTQENGGVSSARNRGIEESKGEWIAFLDADDYWEENHLEELVKAIESNNCDMSICNAIWYYWWDENKRIIKRLPRESVIEAEDFFKELPIFMLTVVVWNKLFKKELFDSIRFPEGKTYEDTATIVDVLMKCKKVAYLNKALVNYRIREGSASTSFNPAKAKDHLKAIEVAFKEAHAEGLGDVALRAFQRRYVNSII,19.064942570982527
42
+ MRPNLFLLALPFIALAAPAHAESITVNGDARIRALGKQNYAEVRTHISDNGTKATVDATGHLRIDAPLGERAQVKAYGELEAIYAKPSGDKNKASNTERLAYAGLKFADHGSIDYGRNYGILYDTNAWTDVFPLWGADVLESNTAAYKRTYGNVLTYRNNNAFGYVDGLSFALQYQGKNPTTGEVVKGDRVNSDGRRLGAATVGYDFDGFGIGFAAASSKTEQNGIKKDTDGREYAVAGSAKVGAAQVAGTYAETRNATRFGQTGKGRVE,19.328842227230165
43
+ DDALPLSYYGTNKGLDRPATGPDRREHRFGFIADASAYPSQQLFIRGKVDVRDYQGSDTLRDDNAYVRLRNLTVGYDNLLPGSPLNVVAQFDLFNVLNATNVKDYQEVLSGGKAAAANFPIPRTYTLGLKLTF,21.699704462300236
44
+ MAGRKILRDPYIIKLLELTEHNPGKRVTARCTSEGILTVPPDLICCLLIQLPIDSIDHHSFILNLQCKDDYQLILKNGSVLHSSCKYTPGKPAEVKAEGGSISIAITKLQLSDSGLYSCQPPNHEPSHGQLNLTVYKQTGFISVSDTGVGIVRVRAYAERPDDLNVTLTCLVTGVFPHDVTVQWTKNNSPLSKDSSPAEEQQHEDGTFFLYSKLTVDKSRWERGDTYTCVVAHEALPNKITKTLDRSKCQGEGLAPL,21.725914279351123
45
+ MIMTMTLTMMMVMISNKTHWNSFQMNLMMTSLMILSLGGLPPLTGFLPKWIIITELMKNNNLITASMAMMALLNLFFYTRLIYSTSLMKLYPTNNQTKTKPKMMTHQMKLTALMTITMSSMTLPLAPQLITTELMAFAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTLIMMATSLPIIMKPMTPWWC,22.24920166064802
46
+ GVVKAAVSFCLAFCLVLCIAVTAVWFLSPTSDLDKKAVLPREYEQFKANQSSDQLRAFAAQYGLDATPAEGATDAMLAKGREIYVVNCSICHGSDARGASGLGVTLNPRPPSFTDPGFAAAHTDGEIFWVIRHGIRNSAMPAWKDKISEQDRWDLVHFLRTFKPESQKELTEAEIAALSVGEKVTMGQALFQEKCIVCHGANGQGNQTVGPVLNPSPRNFTSGVFKLRSTDQGELYAIRNGIRQHGMPPWGSQLKD,23.148315124172598
47
+ MRTHTGEKPFACDVCDKRFNQKAHLNRHKTIHTGERPFACDICNKKFSEAGHMKIHTRTHTGERPFSCDVCSKKFSQKIHLNTHMRIHTGDKPFVCSVCNKSFSRKGDLNKHMITHTGLKPYSCDICSKSFSLKYNLITHKRIHTGEKPFVCDVCGKAFTQKCNLNIHMLIHAGVKPYSCDLCNMSFTQKSSLNTHLRTHAGVKPYACDLCGKSFALRQTLSRHHKTHTGVKAFACDFCDKTFFANQHLKRHRLTHS,24.00786399231911
48
+ MRITKGFTLIELMIVVAIIGILAAFAVPAYNDYIARSQAAEGLTLADGLKVRISDHLEAGTCTADNTAVNGKTIGTEGTVGALPEGVSGDCKLSVAFTAGAAGKEITVKYDHKAGALTYQSATGKTISLVLPASLITKAGSWQGSVSWDYLKNLVPTNLRYAYVRSYMGPDYNPNNWPASGSTMPSDICWKSGDPNYTGTPGCTKNNSVAWGYPINPATCTFTPVADPTPTLAPVASVSLNKCYSAGTATLTATAA,24.29027038113483
49
+ MVGRVGGWIVSVDPDGRFGPKPYKRHRAGIKDALSYLYQLKCRLRIDPDTWREWASPLRESITLEECRYTMPSFAVQASFMTLYWSVCEALFGCRFVYGPFNPILGETYEAHVADSDDEGQKTRYFAEQVSHHPPISACHVDSEKFYLDGHTCIRSKLTGKAISVHHVGQSCLTFKRAGETYLIHMPNQYCRSILTVPWAEQETVHCPTENHSAILEFTKGGFSAKFTGRWSSVLHVISAPHAATAEEKYPVTQVD,24.583101326751542
50
+ GFHYFDITLAYFIPALLALLSSAWLIRAIRMDRADERAALTARIDELEQHNAALQARVDELERHVAMRTSELLETEQALAAERAALLDKGNHLASNFDTLKQRVAQLESERDALAADRDNLRGERDTLSGQVATLEAQRDEFARQLDAARQQAATAEERARQAEAAAASLRQRLDEALARVTELAGQNSELQAALARERQNNDALNARVRELEEQVARAQAGANQAQAARDRAQADAERLRQLEQQLAGANEAARRRIADLEDQLNRANRTIAEL,25.434296722653517
51
+ QDTVADETGFFETELTVGTKEDRYSTVFNYRRINRDLKEPQDVNVYYARYEWQVAEDWKLRPGIRLDHDDFFGLTSSPKAYLMYEHDNGDTYKLGVARAYKAPNLYQSNPNYILYSKGQGCYGSSSCYLQGNGDLKAETSVNKELGVEYHHDRFAAALNLFHNDYKDKIVAGISTGVSGNSEMTTANYMEGWMTSVKWDWQIADNWKTDTSISWSRNKPKTSSSLDYQLRPENTLNSTLTWQARENLDFGWRVVHYG,26.433123728733182
52
+ PPSECPPSPCGEKEYFDVCGQCCKKCKPMEGKISTACRKISDAVCDSGEWVEHPASDKCYACQKTCATRRPTQKACAAMRDCKCLDYFYRQLCVSCIPKCPRACDNQFCTAICNPGCVCPEGLFQDEFTGLCVPESECRTGCSNGQVYRECTSPCPSTCGNPNPRPSCSKTCFDGCACPEGMVLDDQNICVLPEQCGCTLYGRHYKPGETFTSDCGNPCEPTCENAYRTVVCTR,26.468925245048567
53
+ ENKYSLLYKNQTLFDEWGIKYQVKSRMIEKSLYSVVFNVNDKKYNIIMRLYDKETKRIYSKREIINYIKNNSSINYKIDLIENGEYYAIAMPYIKGCTLRQYINKHISEKDFINILQPLIETLKVLHDKGIYHRDLKPENILIEQDENLFMIDLGLAIDLTNAIPTIDYGTDGFMAPEQALGNKPTFASDIYSLGVIAIELLTLKNPFDSNISLSESNWISTLHKKDKPLSSVLSKLILKMLEPSPNDRPNIKDVLNSLNSLEVLQRGVN,27.369412815985804
54
+ EKKRKRDAVTWPPEKRQDAILFYLKNHNAPGMEFTEVAKAAGIHKSTVSRELKDPTFPPDASSRAGPGRPKKLSAKADELLNAWIKDTYVEGDLRREVTANILREKALEHGIIELSASTVWRILHKQLGYSSKKMSNRAIAADRRQVQEYRLEVIKAMHDNPYIYLDEIWINQNEAMNHVWFHDSETGLRSTMGLNKGSRGKRIIGVIDAEGFLHYEFKSTTDSTAAKTIVDFLEHNEGDNYLIVVDNAKYHSRL,29.60231093300791
55
+ MVLFRATLVLTLFCVQLALAQVGINTSTPKATLDITAKTTDGSKPEGLLIPRVDRQQAETIPANPQLTIYTDGKTGKGFFYLGTTTPAGTANILDISKNGYYFYNGTAWVALNSGTYGSGTSGTPSATTDKEIYTNSTDKKVGFYSPTGTLVGYNSLTTTDYNSLITSGVTPSYAIGTSNTAALSSFYTGSVSGTLVTTGLTPVIGAAATNIYTVLDGGTSSTITIGSGGTVTSVTPIGGVTSVSLPLSGVSAVSITGSGSTITMGSGGVVTSVTAPSSVSTISITPTSGSIT,29.77388588380658
56
+ LATLRQLWAGTFRRLWRAGDRDPDPAKVPLRARLVLMAALPVLALVLSAALTWQAASEQVRSATDRTLLGEVAEIGRTVSTAYGDVDTRLRGQLDGLARIPGVRSAAVVPLGAEGGTTVLGERTVPAADRSRWFSSLPLRSGSPDTVVSAPVLRGDRVLGSVQVVLDTDRVNALVSGLGWVLLLDWLAVTLLLWAAAMVLLRRQLRPLARMTAVAGAVAGGDLSRRVPDPGPDEVAQLGRAFNTMLDRIEQLLAGQRALLDDVSGELNARTVEL,30.911742604776983
57
+ LSSSCFPWSLGVSVMTFISLSLLSYGPDRPLCPLTPTLSSLQFLVGTWKMVEGSGMFQEFCNHSASQWTFTADGHMTSKAFYVQPQQGQQLRCEEMRLIAQKHHPDTHRCRSLGQPPDTPYHYEYRRDCQDPLTMQHYVTEVMSRRLILSRQKPWDPAPDHIPPGTKIRYVSSPWGPEFCEPVPTQGEAVTLHGTVTHHTLGPLWGEGNHTALTDGFPEGVSPDVFLSAWGPKGLEKLNSLAR,32.019316129846914
58
+ SPLQIVRDHFIREGRLIDPPEREFVPNDMPEYVLPSGERLPPIDVAKSRHRAVMPPPPSDYMAEYMAYADIMAPVTYYTRKDLGLGTKTILVAGAIGGLCGFLWFFMYVKGMGVLDALGITPFQIVRGDFSDTMSMANGFHMFFMITCGICFGGWATNWSRKAGFSDSMEASLMSAVVAYVLMVPMMMGATHTEMLANGHLMDLTHWTVAHLNPFHMMGFFAINVVAGLASIMVFALHLWYALTVRKTFDPEVELKTLKN,33.613951886997285
59
+ MAYRSLFTSESVSEGHPDKIADQISDAVLDAVIAADQASCGTAKAAVTTGLVTIGGESAMCWVMSDMIRTTLVDIGYSVTAVGDEGGFAPNIQSFHDALKVIGDTIVNTRKAQSDTNVQIGIDVCATSAKVLPTEYMGYEDRGASLIFSHRSGETEDSTIADFCVGVLAADIKQTLPPIVAELGKPARLRAMGQLAPLAEDAAFVGYDWNHTTGFPRFSAGSMSTADALAAADNTADAAAMANTALAEAAMAGDHATAARWSAAVEDLTAQAKAGTITTGKIAEAIRAACL,34.430385572117466
60
+ SPDVQIHPPKRDPDPWGIKGLSAFLLGGATLWGLAALAIHLAGLVPFPTVELGTADFHMTLPFMAAAAGGFLIAKHQPRDMFGIGMPEDRPLIATGAAVSFALVVIALVLYAVAPGTYTPRAIGLVGSLAVSAGILGVFGAVLGRLRPVRGIGLVPAAILEGIARQPEARGPVLVSMVAGFALGAVGLLAPHHFGLAFGFGAIGGLGAVALAGWTGALVGAPDISGPTAIAAKMQRFYLWATVLPVAAMVVALVAIATPHLNLGIGEGLLLGGMLAGPLCVAA,35.89969391101693
61
+ SAWNTNLNMDARSAWATYQRQNGEVIGWMPIVNYADTIHDRDFAQAQLIFSTQVSKLWWAEDLGVNAFVVTLSNDLYQLWLNSPDEKADLMKQININAYNINWGVDDGTYADFQVWNIARMLRNDPSTNGKRYFAYGSDAPLIAAYRDQGWETNTVRGYGEYVVLPKAAGTVDNEVAQAAVDNWYSGAIANRLGTMANTGAVVQTGTTDNGIYGYAMTDGKTLYFPRYNTKYYNTDQGGVAHEFGHHVDYAV,39.68959897551875
62
+ GEKWIMKFDGALNPSNISAVLAGGLIGLAVGLQATFFNVSTTSHVTGVLGGATVVGMATYYKWASPWAISAGTFFSLVLGTYLGSQLVKRLHVYKLPEPIAFFGGSFVMVWLWSWMTTYIYPASHALTPYASHLSYLCAMLLGALGGILGSLITPPLKDTFIASALGIIGGTGFAVSHLTMLNPTIPSTLYAIAYAATGIWGAITATRIARVLNLFEGALVCGAATVFYSFVKVVAPELLPVALASIVCAAGVLYVANLTKVV,45.78566418659657
63
+ LAPSPKVFFIDDTPIQWGFVIILLLLSSGGLFFDSKLAGIFTSLGIAVGLIGAALTTFADTRKGKVTPEQLDRVNSTLKTFFGWSLISGVLGLAIYAASLNIDGKLAFVDSLFYFTGTGLVTVGFGDIVPTTTAAKILVVVLIVGGIGFAGSMISTVASWIRSQQEKSELDKHTIRAHARNIVICHDDPRVSALCEYLQGYFLVDDKQSTYHVLPMYLDGNSLERRALRKKLFSNRVAKHFAREGSVRDLDAVRRANVAGARAVIVLSKADENID,47.50012378184719
64
+ GSTDLSTWQTYVQSTAATITSYYQDTASQAQKNQVLANVTQIINQLDSSTKTKAEVDSALTAINKIKAQIAGDAGGGSSTQATIQGVLDNLITKANNLLRQGQTISEVNALISDLNNLVTQAKGQARSDQESVYTKADSALSNLQNQLNQEREVGSNDRYISQTEKDNLIQNVNNYINNEYLWTDGTSNEGQRLTAAKNLISDTLTNDQKRAAQDAINQLIKDANDLLNQARDRAANQGVTQTEKDNAISNVKTVY,51.616257412346954
65
+ PVPVPVPVRRPSNTQLDSPGHLRTLLDRNHLPPPDTQLSPDNRLLQDNVPGSGRPLPERTRLSPDRRTLQDFPVHGRDLPEVHRDHGLPAPDHIPPGYGGFLTEAQRHKEWFHVSDTHMAPPDGTSYPIARFHVSAGRPGMPAPDRYFAALGGAQGMASHMHGSGMHSSHGMHGSMGMHGMGHGMFGGGAMGPVFFIVAALAIIIAIGVAVAAKAGGGEGA,52.07059943074766
66
+ APFAICRRCRRRRGLPVCARRRWRRRRGNIWCAVGSGGIWRPCCRCITRITCRLRVSAAWRICCAGCRGRTCCGSFWWSTTCGSRACTARWTPSPWRSTGRCTRGAWTRWWRCARSTATPSPATASTWRAGWRAATPCGSATSTTSSCRCSTAW,52.5490203150644
67
+ LVLFAPTFNLSDPEGTVFATLVAIATAVGGYVAIPISGIDSIAGGVVSGYAVAKAGQFTNALKTTAMGAAVGEILGEQLYFGGFGPLGIVAGLITAGAIHKWLVMNKVSVNIYDAIGGRRFEVVLAVMIVTGLIMSFFVPAPVGGFIDNAVSKVGQSAAIGFITDSGSTLLANGINPVIAIGFLFAMAGVLIGGFKVASAQMGTLMGAVAFITGAFGFAVHFGANMVGVGALIAGRFTGRAFSDKVNETWPAVTDAVNNRYRTMVNVLAGSVVGAIFGL,52.5972401908542
68
+ MAAIHPPNLSFLPKPSAIHLFAFWTGSMGCLCPLLLGSQPILWASTALLLGTLQLGMGLKASLYPSPFPSHHLFQTTNYFLSFFLPFSLLSYASFFPSTLFPPGAIVTLTGLTLHGVSAYTLGGATGAWINYNTNHIFTAENGTVTGIKEMDTYSMVTANRFWSQVFQILFWCTNALALATHFSRIWTISRAEKHQLHVEEEHHHTAAEMVLAENIGIKTLTDYDDDDKMISYYRKDGVHHMHVEDAELALKLQEEEDLKNKKN,52.98995197391265
69
+ GLFAVIVEIPFSLRLPSVVQAKGSFSDSLFSHSAYPVVQPYFSPETLFGFDILLPITGEPVSRGLYTGHQPLLVVGVETSFLLTVETRLTGEVYSKGGRNSWDIQNCNFFGSDGKKYSLPAFERKKVKDVKCVDQDGVFSEVILERTHTSFTLKYTLPDSEWLIHSRSQLVKREDSNMGRPRKHLSSLVARNSSFEATYQRVSEKETEVSVQFGFSVGWKVIYLFLVKHFPFVFHWISNVLFYLLLNTLFAYIPDFSTFDCLAFLVTL,53.005620188296234
70
+ LTPRQRMWYGILSTAVFLLASEGSFFAISLTALVSYAYYQSILAQTQPAAAPAISAGFAFMLGVVIFGWVVLGVIQALINAISEWIRALVINIYSRTVFAPYVRALSHTPEGVRVINLQSSQLAGLFVNEFVKGFVDGLALIASLLVSLLISLWMGGVLGLIVFLYFCFRVMRQVGENMGRLREAQGQMYEQTLGLVEGLKDIRAARREEVYKGRIESLFGELAGMEVAGAKVQAVSTLMMRVVTQVAYLCMLWVGAYGVFHGDLS,56.40990415587325
71
+ MNINQLVLKAREENKQHENFQQGRLNLRYQEISKIEYLNRCRKLAINGNRIQRINDLQFFYHLTYLDLSNNLITSIENLHCLPLLRNLNLQKNLIGHITGLETLVRLEYLNLSHNQISKLENLECLVNLERLDVSHNHLTKIEGVCFLKSNILKELNLESNLLQELKFCEHLDYVTISNNNISSFSQVCYLLEHMPRLKYLSFTGNPYEQKLKQYRMVVFSKLQYLDGFVITEEELCRGSEVVDWIDSGSEFQRFRYCVINFLKDENNRT,58.18325968813114
72
+ GWVRQLPVYKRFAPFLSKFTLVTSLIAVGAGSGATYIQNLRKPRVRDKIVVHTVPLTPEMSGGKRFSVAPPSGIPHASHRMIPIERQREEDAXRERALRKKMLRRTAMLASGAFCLVLFVALGATIGTLRSEGVLKKDEFIPRPAIVGADGKAYDMDHPYAPPVKYQVQWEPKMGEKYYFHDYAKHHPNDNPENPYNKVAARA,60.55516244953947
73
+ MSASLFQTQGNYLVAAAISLSGLFMLVGLLAGSPRRPTYRWLLASVTLFCVAVSYFFMLSATTLEQGLVVKTNTGERALVDAVNGSVQYADGHYEIEATLRNLGSQPVRVEISRLQVVGEKMFGDIQSRTVEVGPNETRQVKFLLNRVLTSSANFRDRVLFVITDAQGNRQFIEVPVAYQYAQITGLLIALAWLAVIVIGFPVAWRSRMRIASGNRPVASGPQIAYLTALLFAATWTLVLMIAGTQIIGSQAGL,60.895889009456674
74
+ AQTTLNVADNSGARQLMCIRVIGASGNCSFVNQQKCTGICGCTRNATPIESEEIFDCIMKCGGQPGDCEVFQTHQCQQRMANNAHHYRRHWLSHTDFCVLPEHFHLDQDRHFHFQQHHHNWHHGHRHHHHHHDFHFGKFFETFAAPFASIFGGHIHGGFEKFSEMLANGFGGFDMFFGGFGGHGHFGGYEQEATSFKILASVVAAILLIAIAIPLGWLVKSQVSGIKVITTTTSGANQIILMKTVVAIATILAIAIAIPTG,62.10915337352313
75
+ GKRKAAVSRAAKLAATRAVPFARAAAIGPYAAIAIAGTKMAIDDHYKKDREKNREFVFNQWMSRKQLYDYKRKFWMFGPEKMKQLYEESGAKGAEAFFKENAETFKKIRDEYLVDLKNGTANPLTGEKVPLNPALPEDIRFPKYTPPPGLVPEGENPYYIPPPGYVREAERAGMPPPKKREMRMRPAGSEPGTTFGGAGYNPFAADPEYPHTAYAXXXXXXXXXXXXXXXXXXXXXXXXXXXXKRKAALSRTARLVATRAIPFGRSAAIGPYAMTAVAVAKMAYKDD,62.61105811999597
76
+ GWVRQLPAEERPVVLDRDEIELDPPVIGMGRNLAIMAVSVFLFMILTAWFALGEIQESEIARGTLRADRTLLDRTFIPITERGVFTTLDSRWALADVEPGELVWIAVDKHPATLQPGQSVQVYVRAVNDKPDNSVITPYRAVFAEIEREGFRWIVSVDQERFDQFRAHVTESLRLVNRGEALVGADGAPIPTIDLEATPGLAPDIPVTLRFEAEDIDWRILDQSQVQVARANVASADVSQPGWQEVELTAVAPWQAGKT,66.68297956107664
77
+ GWTLHPVSLYFSNHLGYVRLYQLWLTSVDKKSTNAFYHEVSDSQRKLVKRITRMELCFLGVMTLISLASLAIYAKFDQTSLPMLNKVFPRQNDIVTPVKFSLSASFFVFFLLLACFLSHAVNQVAKLASFCSALEDIQEFYVRIREELDSLRSYVENLEKRSAVSEEKLRLQASQTEMLLKRLPSFSSFCLLTLDRPILLSSHCPSLLPTVKGILNRGYKLSVYDPPPFQLGLCKDTHISDTQIYYNNGSRLEGATFHL,71.44388492712908
78
+ ALVPSDVSDQAEATLAFARQNLAKIEPEKIEIKQEPASGVNPADQPSQLDIYLTCTLKNEIRAPPGTTMPQLNFLRNQLEKNLLVPASQRDAYIQANPQQTLILDQPSPLTPEQKEDLAQLTITYGKNNLEVNTQRWPLPSLQVAMQTLESGEAHLEYRIHALPKAAGQPPVPVLKLVSKTTLPATAPVPNTASPTLSVRLPPRRTPPPPPIADEDLDDSPIVRDSRTLLKILLPTVLALVIALIAWRLWSSFTSHRIEAIATVPLPSATATPTP,72.99576740691371
79
+ MATPSFVSEPFAGLTPRQRQAIAAAMRSSLGYVQESVALNRMYSSALQGLVKPAGNAATIVASTGNVGTALSTLSGIQTAFSQYLKGKGSLVGSATNTLIAAQGKLISDLGSLITQEKTFMDSISKKLISDMDIAVSRTQTINSEVTKLTQERNALVAQLEAARKDADSAQKATITTELSNIIGTVAGAFLTAGFTAGIVLSIWELWAWGATLAAIAVGVGILLIIYATSRSSASNRKAELDAANSNLQNAQSTLKSDQQ,76.45022543295501
80
+ TPGLIDKLLGGGVQLPPGLLMALAVLAIQLGFIALIGKRVQFGAVARRYKIDAPETSLITAVLLGLAGYLAIFFAMRGMPWSATGELRWISGPHLNPLTFTAKFAMCALIVVPAAMRGWWAFSGPGADERSRHNARYAFWGSIVAVTALVVEGFLIMAPSLTEARFSPFYYARLLTYFVVTTALLVWTTVRESETPGRTLMGFALFSAAMVGLEMLSFTRFAVQFPTWWNVEVANLMYFGTMMIVLGLFFAMGGNIRWMVAA,77.96717901193621
81
+ MRYFKIRSTTLLIYLAAISVCALSICAPGFITPDEPAHFNYIRYLADHGQLPRIDPYAYASWGSTLSSLSYEFFAALFSWIPLETARSTVIFFAILNAVIIFATARRIAARYGSTGAFAAAAVFLLSPRVLAQSSFNNYDSLGIALMLAAWIFYEKVLTEKRLLPAVLSAVAVSIALLTNYQGYFIFAAVLLFSLPFPKLFFSRKNILFSAGVLSAAVIAAGLFAVFYKDLFLYSVFDVRLMSVFKMMTHQYPFSDAMTIYGGYFTVLF,81.23947975232642
82
+ LSPDLVAQLKAKTGVSYKEAKEALEATNGDIVAATIWLHEQARTSTFFFFFFFFNLVVGMGLFGPDRPLWLPGHALRLQPRHGLPGHRAAGLHRPRALPRLRLRPLPRLPRLRQGRPHLRHAPARPLRQPRLLPGDHHGRLLPRPRRLPLRLRLRHPRLLLRHLRLRPVLLPRRPLRALRLPRQPRRPLLPLLRRLLQGHPHRGARLPLRPVRRHLLHLRVRPLLRRLLGLLRARVRPQLLRPAPQRLHRLPRAQARPQGPRDGLLLPGQGPAQG,81.88453571822619
83
+ VGRINTAVTKVEGLKGVFDTASVFIIMRLILGALPGHDYFWHVATHKVLSTTWYELFSNVFLQVPSFITTFFMGAMLVQTMAQKSPEMQEFLKKGGIIFMTLAWFFFAPSGDYVVMRVISACTALVFIVTSMLEMNHVTPPPDTGLPRPIALCLRAFFYIGFLEWCVQQNFYAMCVLFFFMLGGVFTHYTALFVARYMKFFETFVPPIVHSGFSIAWMMWATQEGFITPMGQEPLLLTVLSVMVFFSVMSMC,86.07420147138896
84
+ MVYRITTIILVISTLTSFLIMFIPLTFRTFHYVMAFMVLLETSMFMWWYFDMSTSSYWNQERVHYEENGVPEFSLSFWSGLMFQMASVCYTYGKVYLSALRFGDMDHVQGQFIDLSNHFAMKTGLNPNDFKMRWPIQLMHNIINTMVEETEKLNAKQQREGITAEVEGEGRPQTFYEIQMLWHCITIILDELKRCTTVSNAIMTKETVDRMVHLCEKGIIPPDLEDFVFKLVFFTPPFEMILNFAI,92.19736060379442
85
+ MFSKLSLDAVPFARAPQWQRHLLRVACLISLFSLAYLAIVIAADTTNSIFTVGIGILLAAGVWFYWRDAVREELSHNPLGTRAAGIILGSGLVMLGLQLSAHLTGTWGYVTPTTFRWLAIMALAWPAAFLALRLTRDEEPVSEAMDNFDRAMAIMLVVSLVLWTFSPLLRGAVQHLHWLLFADYCFVVVDVVAVVMIYHMVRFLLAPLRETHPDAAQAIARKADAMVLWLFLWALYPIAYLVPAFVWGFHFPEGSIW,94.53532369154783
86
+ MVIVAIDRAIKATTILISPLIVIDLISAFIIGFRYQLVHDVIARICFAMVFVYYFALFFEIYYSRHFQGYQSALIKRCFLTLVPWLIYGPLLLLYRPVGDWYFPMTLLAFTIFALLAKRFVIEEETRDVMLEKERRMHFFAMVLFVGAMAIAFALSHFGVLEAFMPYRAFWMRGVTLIYFTSFYLVLLHHYGLREEIAFHKRGEVKPYPAYLAYTVINLTAWAVFFFFTHYAPTSAFARWWAWANFICIPFYAIG,95.44574656037318
87
+ MLLVFFAVMAGLLYGWWLRGSPKHARVTLGFYFITFFLLALLVWTHLGPSQAWSGFSVTLNRFYFWYLIITANAGAVLSAFGLVHRKTYVPEAERKRISLQFDAVFLILWLASALVCTFVMCEYLRWGWTGTDTLFGNHYLTPVLGPLLFWEWVTGLGLVVFAVLCWIYVRKFHYHDNLTARFAYSLLFVAPLIYLWMWVAGHPYQLAWTQDTAWLQSMGYWNGYPFMNPAHMIAFLGAGALFSLAMVAHGFRSERDGY,99.45883530953378
88
+ FGKDVVPVAATMVPFFGAIGFVLALRQPHFYPPAILIHGFIAAHFIGLYGENDFGEDFVPYFVAGLFVFWGFVAFILNVYFPPTPQNKRTLREEKYHEQVSVLTQAAIDGQEPQEIEVALGQVQANFDTAKSALEADRLIANQKLRAAVSTAATLIVMTAVIVGVHSQYDLLGLVLAMAAAISTLAGLYVFVGVSRAVLTFFTLRRGKTDEFLADADNFLKRNPVPVAALSALAKGHRDQAVAAAQSAIDNINPNPTTSSSSSTSASSSSSWAFDPLG,100.05271078832499
89
+ MRCGGTMPSTRSTTTGRCTRGWRRRICGTGTATSWTRPTGCTSRSRTSTTSWAGSPTCRTSRTGSSTPWTCPCTCTWRTRSSRSSCRTSPSWTSRRSTRSSRCTKTCWWTRSSRTTWCISGRCSWRSGSTCTRALSWSTWGRCATRRPTWSARSTSPTRRWSSACTARSGRRWCSTTPTSCTWGSCTPARTTGAWKPCSGSTSSPTPTSRPQARCSSATWSRACPTWRSTSSTRRRTSSAATPSSGPW,101.66820225573242
90
+ RIHDTILPFLMLGVGAFLSGIATLIEKSPNIMKCLPLLLTIGCCIPFLGWVSPIVLPFFSMKTQTTLSDGAIYGNSSISRVYENGIVEETQYVCGLNIFTSRIEVDGDFLFPKYYAPTNDTELQYVTEIPTSAHGTNPAELNATRKNLLNTLGPRYTLVLTDTDGVVRDYVVGNIPQGSPSPNLRYKGLRLELAVDQLPAYTISPPDGTSAFTFINKHWLIDIPTTLISETMVRKLVKAAGPLGPAYIVITEQSPNPIVATAGQAR,103.31987729217545
91
+ CRFGTCTVQKLAHQIYQFTDKDKDNVAPRSKISPQGYVNPNNEPTSYISPGHLRTKKSNMIPAKEVTRIDPNIVPNPNVQYPNLPAPYMYSGRAKRRRNLGLLMGRPNENPDNQHEMQDGYESAAYSNSYKGTYGKLTRWTSRWINNHYIDIERKVHFKDGRIFKTRAESSRINPKIGDFKTTKYITRGEKEALGFKIGGRLLLRPSSKLEKNFTVTETRTIRNGYTTTISRTIRWDDLEKCPLGNCAVGDLVTIDVTD,103.52201921223038
92
+ MWWWRLLVVALLRIGLALEDPARNPCSRVFFEGLTGCQQKVLRAVYPDPSRCLKACSEMKEAANSWGTRYAVATSVLGLEWLAYSWIQDKVACRCRGLSIPPTQKPSLFEKLLHSPLLLQGLQRAAEPVLGFFTQATQALKEAVWSALQWLGGQAGHILAFSRHFAFCLMAFSTLTLLSVCCNWWAIRRRFHQLESVTEQLLRCQQYVLQFRAVSRRHYISWALQLYFAHAFILRACAQLVSVLTTVSNMVSDSFSL,113.06700569292313
93
+ DPLSIILGILAGLFLIILIVLYFCGPYCTCIKRTGCCGNRWCYRWRCCCRRRRWRRRCCRWRTCYRYRWYSTRVRKCVKVPVVKTYKYRSKCGTCYGYVTRTRKVCCSYSSSSKKVCYTACRKKVYKTRYTYKVKVRNCKPCTKYRTKTVCSKCSYKTKIRTRTYKVRVAKCPRKSYKVVTMCKKKPSYRTCSRTSRRSRKVCLTCGSKAYRTKRTIKVPVKKTCSRKVSYKVCARTSHRTH,118.16791808043538
94
+ MQTYNNPEVTYFDRSQTDVEYGWWSGNSAWKNEQWLVMTKEEAKEFFRRSWIKLLDAFLPTTYIIVRWYQMYNYGCPLWCEKNDGKAHCKDWDYHPTCGKGPWWANNPLPTVKGQCEVYTTHRAGSSKECRSYYDLTSAQKAALQSSDCKATTGVYPFYSQAGTCRLNADYPLEKIPEGICNVHLNHKTRASHWGDPDIPTSQIWYFAAYDQAEKEWRTLSGTLEHTWVALSHEDYQRLVDIESKVPWSVSP,119.47290840438525
95
+ VQHFTGYVEDGRGIFYSLPMTNKGLDRIMLCIAVIVAFGMLLCPLASLYFSSEPVLVREDIFSALRTLSIFAAVWQIADVLRRTYVVVSKNPLLLLGLALELTFYTVYFGLDKLYPYPLAVFLPLQFGGILLRHITSIYLQAVSSRNESIIAQLRREREREARRTRERNIAQKRRIDAALWRQMSAVVIFLLLWLIAFTSSALALYNNLLASQQLSIAGLTPSQAASLNTGELLLRVIYGLVISCSAVLFTMTVEARDKIMHD,126.04829832003558
96
+ MLARFFRRQRTASFSLATVVALSALALHTSGMHRPALYASATAVHAITLITLGVMYARSMAPRAEGADHDLRHFMTAYLVTALAWPLAMVLTFALTHFLPGTDPLVPDRTLRLVTLINLAFMASATAHFAFALHTGWNVPRAIAATIVVFALVALTAWLIEIFTGGSTHWSFWAVLIASAAIWLGLALYFRRHAAAIAAFERRHNAQILARFIAAQDETHEQAGGGARSLAHNLDSPLTAAALFADDLSGKVDAPVREHLRLIRRSAND,146.856677830673
97
+ GWFDAMLASVSEFAPIFVVLIIFIVRVYKPFGSEWIVHVLHIADKRPGLNALIHRLLPRTAVHVPQAVKDKYVFLNSEHCIQFGCRHDPVPQYLELLSKGTYSLKVDVWFKHDRAREFYNMLLNEAQTASENHHASKIRHWTDEKMSELFAMAKKAYIPLNETREHSHDKAHSHNHAHSHNHSHDHGHSHEHTHGHDGVHAHDHSNTSDAHVHSHKHLHLHVHVHDKKNIIRRMNSALRKMKAAGVNTHEVAHVHDETTP,166.7331315912073
98
+ GAPPITGEALEKDISRREKGVGGFLSRLFSLVNSTNPFAVGVEGEKLLEEIENIRDSMGHQTAAQLYFAQQQSLLQAEYARWQESHNATLQATKDHIFNAQLGHILMLAGAVVCYTAGLRAWAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXFLAITNTAINTYFGGSITQSLEQVSAAVEHAKKVGLLSQETVGQIEAAYNSATGKALSYNNIADTEAAFQEFSRNHVLRSQLDKENADAAWTRVQSEGASLRAYLDHASRAITSALNGAIFAFGGP,169.6224292611664
99
+ MSAMSVQIDRLQDQLNHLGELVAQNSKVIAALTQRIQVLERIVTERLRIPYIPLEKRTALMFPLHDEEKQSEITLFINAELHLGTAPGKHKVYYTTVEEMIQHFKEGKCLPQNWPQSDNPFWPCYRELADEMKSNTAAYNNFIKMQDEMRKLCIMLSSGVYHISRNPGGAKDLYTDPKLFIQIYTNECLRNAIPAEILDQMIIDLYANYTEADIHNMAEVRASRNFNHLEKQYMHKLLKLKKTLPFAIQASMDVVL,187.47480920419864
100
+ AAGVAAWLPFARAAAIGWMPVASTAPRAMTATASWPIWMIWAMAMPAMTGRRWRRSRWATAPMARSSGAAPMMARPVMTAMPVAAATIRPSALRSISATASATAGSASAMTRSAAMSPIRTIWRRCSRARRAVASGAWSAISATSSARRRTTSTARALSCAAMASGLPSASMKAAAGGGSSNTMPRCSGSSASRTRACGTASPSCCRAATAASASARAARARSCRASSRARSAIWRAMSVRSRTWSRSARLRRSTSRPSMRSATAA,216.8557544805602
101
+ EKKEVCSVFLTNRVPLDDKRFRRERVYLPGESPFIDPDLFLSREHPLRAQVRGTIIEWLRASIYGIYPYPEQRDPNLWCTERFKQEVMPDGHCEPTLGFVPLTFSTCLTRDMIAASSYNWRKTMEVPGAKMLLHVGPLGTGGHYDYAFTFLQPDNTFAYVKGNKLVRQTKIWNDAGFQLVTEEATLLDAQEYFGAANKLGVCIFCGNCVEYCPTNCLSMCEEVLPRGNALQESWTILERVFMPEDPEHENFKYRRLRTSDGAKFINYTS,520.388790480398
benchmarks/Generation/ProtGPT2/protgpt2_test.txt ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/Generation/ProtGPT2/protgpt2_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/Generation/ProtGPT2/run_clm.py ADDED
@@ -0,0 +1,657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
18
+
19
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
+ https://huggingface.co/models?filter=text-generation
21
+ """
22
+ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
23
+
24
+ import logging
25
+ import math
26
+ import os
27
+ import sys
28
+ from dataclasses import dataclass, field
29
+ from itertools import chain
30
+ from typing import Optional
31
+
32
+ import datasets
33
+ import evaluate
34
+ import torch
35
+ from datasets import load_dataset
36
+
37
+ import transformers
38
+ from transformers import (
39
+ CONFIG_MAPPING,
40
+ MODEL_FOR_CAUSAL_LM_MAPPING,
41
+ AutoConfig,
42
+ AutoModelForCausalLM,
43
+ AutoTokenizer,
44
+ HfArgumentParser,
45
+ Trainer,
46
+ TrainingArguments,
47
+ default_data_collator,
48
+ is_torch_xla_available,
49
+ set_seed,
50
+ )
51
+ from transformers.testing_utils import CaptureLogger
52
+ from transformers.trainer_utils import get_last_checkpoint
53
+ from transformers.utils import check_min_version, send_example_telemetry
54
+ from transformers.utils.versions import require_version
55
+
56
+
57
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
58
+ check_min_version("4.45.0.dev0")
59
+
60
+ require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
61
+
62
+ logger = logging.getLogger(__name__)
63
+
64
+
65
+ MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
66
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
67
+
68
+
69
+ @dataclass
70
+ class ModelArguments:
71
+ """
72
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
73
+ """
74
+
75
+ model_name_or_path: Optional[str] = field(
76
+ default=None,
77
+ metadata={
78
+ "help": (
79
+ "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
80
+ )
81
+ },
82
+ )
83
+ model_type: Optional[str] = field(
84
+ default=None,
85
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
86
+ )
87
+ config_overrides: Optional[str] = field(
88
+ default=None,
89
+ metadata={
90
+ "help": (
91
+ "Override some existing default config settings when a model is trained from scratch. Example: "
92
+ "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
93
+ )
94
+ },
95
+ )
96
+ config_name: Optional[str] = field(
97
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
98
+ )
99
+ tokenizer_name: Optional[str] = field(
100
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
101
+ )
102
+ cache_dir: Optional[str] = field(
103
+ default=None,
104
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
105
+ )
106
+ use_fast_tokenizer: bool = field(
107
+ default=True,
108
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
109
+ )
110
+ model_revision: str = field(
111
+ default="main",
112
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
113
+ )
114
+ token: str = field(
115
+ default=None,
116
+ metadata={
117
+ "help": (
118
+ "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
119
+ "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
120
+ )
121
+ },
122
+ )
123
+ trust_remote_code: bool = field(
124
+ default=False,
125
+ metadata={
126
+ "help": (
127
+ "Whether to trust the execution of code from datasets/models defined on the Hub."
128
+ " This option should only be set to `True` for repositories you trust and in which you have read the"
129
+ " code, as it will execute code present on the Hub on your local machine."
130
+ )
131
+ },
132
+ )
133
+ torch_dtype: Optional[str] = field(
134
+ default=None,
135
+ metadata={
136
+ "help": (
137
+ "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
138
+ "dtype will be automatically derived from the model's weights."
139
+ ),
140
+ "choices": ["auto", "bfloat16", "float16", "float32"],
141
+ },
142
+ )
143
+ low_cpu_mem_usage: bool = field(
144
+ default=False,
145
+ metadata={
146
+ "help": (
147
+ "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
148
+ "set True will benefit LLM loading time and RAM consumption."
149
+ )
150
+ },
151
+ )
152
+
153
+ def __post_init__(self):
154
+ if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
155
+ raise ValueError(
156
+ "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
157
+ )
158
+
159
+
160
+ @dataclass
161
+ class DataTrainingArguments:
162
+ """
163
+ Arguments pertaining to what data we are going to input our model for training and eval.
164
+ """
165
+
166
+ dataset_name: Optional[str] = field(
167
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
168
+ )
169
+ dataset_config_name: Optional[str] = field(
170
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
171
+ )
172
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
173
+ validation_file: Optional[str] = field(
174
+ default=None,
175
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
176
+ )
177
+ max_train_samples: Optional[int] = field(
178
+ default=None,
179
+ metadata={
180
+ "help": (
181
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
182
+ "value if set."
183
+ )
184
+ },
185
+ )
186
+ max_eval_samples: Optional[int] = field(
187
+ default=None,
188
+ metadata={
189
+ "help": (
190
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
191
+ "value if set."
192
+ )
193
+ },
194
+ )
195
+ streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
196
+ block_size: Optional[int] = field(
197
+ default=None,
198
+ metadata={
199
+ "help": (
200
+ "Optional input sequence length after tokenization. "
201
+ "The training dataset will be truncated in block of this size for training. "
202
+ "Default to the model max input length for single sentence inputs (take into account special tokens)."
203
+ )
204
+ },
205
+ )
206
+ overwrite_cache: bool = field(
207
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
208
+ )
209
+ validation_split_percentage: Optional[int] = field(
210
+ default=5,
211
+ metadata={
212
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
213
+ },
214
+ )
215
+ preprocessing_num_workers: Optional[int] = field(
216
+ default=None,
217
+ metadata={"help": "The number of processes to use for the preprocessing."},
218
+ )
219
+ keep_linebreaks: bool = field(
220
+ default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
221
+ )
222
+
223
+ def __post_init__(self):
224
+ if self.streaming:
225
+ require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
226
+
227
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
228
+ raise ValueError("Need either a dataset name or a training/validation file.")
229
+ else:
230
+ if self.train_file is not None:
231
+ extension = self.train_file.split(".")[-1]
232
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
233
+ if self.validation_file is not None:
234
+ extension = self.validation_file.split(".")[-1]
235
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
236
+
237
+
238
+ def main():
239
+ # See all possible arguments in src/transformers/training_args.py
240
+ # or by passing the --help flag to this script.
241
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
242
+
243
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
244
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
245
+ # If we pass only one argument to the script and it's the path to a json file,
246
+ # let's parse it to get our arguments.
247
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
248
+ else:
249
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
250
+
251
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
252
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
253
+ send_example_telemetry("run_clm", model_args, data_args)
254
+
255
+ # Setup logging
256
+ logging.basicConfig(
257
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
258
+ datefmt="%m/%d/%Y %H:%M:%S",
259
+ handlers=[logging.StreamHandler(sys.stdout)],
260
+ )
261
+
262
+ if training_args.should_log:
263
+ # The default of training_args.log_level is passive, so we set log level at info here to have that default.
264
+ transformers.utils.logging.set_verbosity_info()
265
+
266
+ log_level = training_args.get_process_log_level()
267
+ logger.setLevel(log_level)
268
+ datasets.utils.logging.set_verbosity(log_level)
269
+ transformers.utils.logging.set_verbosity(log_level)
270
+ transformers.utils.logging.enable_default_handler()
271
+ transformers.utils.logging.enable_explicit_format()
272
+
273
+ # Log on each process the small summary:
274
+ logger.warning(
275
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
276
+ + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
277
+ )
278
+ logger.info(f"Training/evaluation parameters {training_args}")
279
+
280
+ # Detecting last checkpoint.
281
+ last_checkpoint = None
282
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
283
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
284
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
285
+ raise ValueError(
286
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
287
+ "Use --overwrite_output_dir to overcome."
288
+ )
289
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
290
+ logger.info(
291
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
292
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
293
+ )
294
+
295
+ # Set seed before initializing model.
296
+ set_seed(training_args.seed)
297
+
298
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
299
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
300
+ # (the dataset will be downloaded automatically from the datasets Hub).
301
+ #
302
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
303
+ # 'text' is found. You can easily tweak this behavior (see below).
304
+ #
305
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
306
+ # download the dataset.
307
+ if data_args.dataset_name is not None:
308
+ # Downloading and loading a dataset from the hub.
309
+ raw_datasets = load_dataset(
310
+ data_args.dataset_name,
311
+ data_args.dataset_config_name,
312
+ cache_dir=model_args.cache_dir,
313
+ token=model_args.token,
314
+ streaming=data_args.streaming,
315
+ trust_remote_code=model_args.trust_remote_code,
316
+ )
317
+ if "validation" not in raw_datasets.keys():
318
+ raw_datasets["validation"] = load_dataset(
319
+ data_args.dataset_name,
320
+ data_args.dataset_config_name,
321
+ split=f"train[:{data_args.validation_split_percentage}%]",
322
+ cache_dir=model_args.cache_dir,
323
+ token=model_args.token,
324
+ streaming=data_args.streaming,
325
+ trust_remote_code=model_args.trust_remote_code,
326
+ )
327
+ raw_datasets["train"] = load_dataset(
328
+ data_args.dataset_name,
329
+ data_args.dataset_config_name,
330
+ split=f"train[{data_args.validation_split_percentage}%:]",
331
+ cache_dir=model_args.cache_dir,
332
+ token=model_args.token,
333
+ streaming=data_args.streaming,
334
+ trust_remote_code=model_args.trust_remote_code,
335
+ )
336
+ else:
337
+ data_files = {}
338
+ dataset_args = {}
339
+ if data_args.train_file is not None:
340
+ data_files["train"] = data_args.train_file
341
+ if data_args.validation_file is not None:
342
+ data_files["validation"] = data_args.validation_file
343
+ extension = (
344
+ data_args.train_file.split(".")[-1]
345
+ if data_args.train_file is not None
346
+ else data_args.validation_file.split(".")[-1]
347
+ )
348
+ if extension == "txt":
349
+ extension = "text"
350
+ dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
351
+ raw_datasets = load_dataset(
352
+ extension,
353
+ data_files=data_files,
354
+ cache_dir=model_args.cache_dir,
355
+ token=model_args.token,
356
+ **dataset_args,
357
+ )
358
+ # If no validation data is there, validation_split_percentage will be used to divide the dataset.
359
+ if "validation" not in raw_datasets.keys():
360
+ raw_datasets["validation"] = load_dataset(
361
+ extension,
362
+ data_files=data_files,
363
+ split=f"train[:{data_args.validation_split_percentage}%]",
364
+ cache_dir=model_args.cache_dir,
365
+ token=model_args.token,
366
+ **dataset_args,
367
+ )
368
+ raw_datasets["train"] = load_dataset(
369
+ extension,
370
+ data_files=data_files,
371
+ split=f"train[{data_args.validation_split_percentage}%:]",
372
+ cache_dir=model_args.cache_dir,
373
+ token=model_args.token,
374
+ **dataset_args,
375
+ )
376
+
377
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
378
+ # https://huggingface.co/docs/datasets/loading_datasets.
379
+
380
+ # Load pretrained model and tokenizer
381
+ #
382
+ # Distributed training:
383
+ # The .from_pretrained methods guarantee that only one local process can concurrently
384
+ # download model & vocab.
385
+
386
+ config_kwargs = {
387
+ "cache_dir": model_args.cache_dir,
388
+ "revision": model_args.model_revision,
389
+ "token": model_args.token,
390
+ "trust_remote_code": model_args.trust_remote_code,
391
+ }
392
+ if model_args.config_name:
393
+ config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
394
+ elif model_args.model_name_or_path:
395
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
396
+ else:
397
+ config = CONFIG_MAPPING[model_args.model_type]()
398
+ logger.warning("You are instantiating a new config instance from scratch.")
399
+ if model_args.config_overrides is not None:
400
+ logger.info(f"Overriding config: {model_args.config_overrides}")
401
+ config.update_from_string(model_args.config_overrides)
402
+ logger.info(f"New config: {config}")
403
+
404
+ tokenizer_kwargs = {
405
+ "cache_dir": model_args.cache_dir,
406
+ "use_fast": model_args.use_fast_tokenizer,
407
+ "revision": model_args.model_revision,
408
+ "token": model_args.token,
409
+ "trust_remote_code": model_args.trust_remote_code,
410
+ }
411
+ if model_args.tokenizer_name:
412
+ tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
413
+ elif model_args.model_name_or_path:
414
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
415
+ else:
416
+ raise ValueError(
417
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
418
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
419
+ )
420
+
421
+ if model_args.model_name_or_path:
422
+ torch_dtype = (
423
+ model_args.torch_dtype
424
+ if model_args.torch_dtype in ["auto", None]
425
+ else getattr(torch, model_args.torch_dtype)
426
+ )
427
+ model = AutoModelForCausalLM.from_pretrained(
428
+ model_args.model_name_or_path,
429
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
430
+ config=config,
431
+ cache_dir=model_args.cache_dir,
432
+ revision=model_args.model_revision,
433
+ token=model_args.token,
434
+ trust_remote_code=model_args.trust_remote_code,
435
+ torch_dtype=torch_dtype,
436
+ low_cpu_mem_usage=model_args.low_cpu_mem_usage,
437
+ )
438
+ else:
439
+ model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
440
+ n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
441
+ logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
442
+
443
+ # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
444
+ # on a small vocab and want a smaller embedding size, remove this test.
445
+ embedding_size = model.get_input_embeddings().weight.shape[0]
446
+ if len(tokenizer) > embedding_size:
447
+ model.resize_token_embeddings(len(tokenizer))
448
+
449
+ # Preprocessing the datasets.
450
+ # First we tokenize all the texts.
451
+ if training_args.do_train:
452
+ column_names = list(raw_datasets["train"].features)
453
+ else:
454
+ column_names = list(raw_datasets["validation"].features)
455
+ text_column_name = "text" if "text" in column_names else column_names[0]
456
+
457
+ # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
458
+ tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
459
+
460
+ def tokenize_function(examples):
461
+ with CaptureLogger(tok_logger) as cl:
462
+ output = tokenizer(examples[text_column_name])
463
+ # clm input could be much much longer than block_size
464
+ if "Token indices sequence length is longer than the" in cl.out:
465
+ tok_logger.warning(
466
+ "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
467
+ " before being passed to the model."
468
+ )
469
+ return output
470
+
471
+ with training_args.main_process_first(desc="dataset map tokenization"):
472
+ if not data_args.streaming:
473
+ tokenized_datasets = raw_datasets.map(
474
+ tokenize_function,
475
+ batched=True,
476
+ num_proc=data_args.preprocessing_num_workers,
477
+ remove_columns=column_names,
478
+ load_from_cache_file=not data_args.overwrite_cache,
479
+ desc="Running tokenizer on dataset",
480
+ )
481
+ else:
482
+ tokenized_datasets = raw_datasets.map(
483
+ tokenize_function,
484
+ batched=True,
485
+ remove_columns=column_names,
486
+ )
487
+ if hasattr(config, "max_position_embeddings"):
488
+ max_pos_embeddings = config.max_position_embeddings
489
+ else:
490
+ # Define a default value if the attribute is missing in the config.
491
+ max_pos_embeddings = 1024
492
+
493
+ if data_args.block_size is None:
494
+ block_size = tokenizer.model_max_length
495
+ if block_size > max_pos_embeddings:
496
+ logger.warning(
497
+ f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
498
+ f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
499
+ )
500
+ if max_pos_embeddings > 0:
501
+ block_size = min(1024, max_pos_embeddings)
502
+ else:
503
+ block_size = 1024
504
+ else:
505
+ if data_args.block_size > tokenizer.model_max_length:
506
+ logger.warning(
507
+ f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
508
+ f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
509
+ )
510
+ block_size = min(data_args.block_size, tokenizer.model_max_length)
511
+
512
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
513
+ def group_texts(examples):
514
+ # Concatenate all texts.
515
+ concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
516
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
517
+ # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
518
+ # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
519
+ total_length = (total_length // block_size) * block_size
520
+ # Split by chunks of max_len.
521
+ result = {
522
+ k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
523
+ for k, t in concatenated_examples.items()
524
+ }
525
+ result["labels"] = result["input_ids"].copy()
526
+ return result
527
+
528
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
529
+ # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
530
+ # to preprocess.
531
+ #
532
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
533
+ # https://huggingface.co/docs/datasets/process#map
534
+
535
+ with training_args.main_process_first(desc="grouping texts together"):
536
+ if not data_args.streaming:
537
+ lm_datasets = tokenized_datasets.map(
538
+ group_texts,
539
+ batched=True,
540
+ num_proc=data_args.preprocessing_num_workers,
541
+ load_from_cache_file=not data_args.overwrite_cache,
542
+ desc=f"Grouping texts in chunks of {block_size}",
543
+ )
544
+ else:
545
+ lm_datasets = tokenized_datasets.map(
546
+ group_texts,
547
+ batched=True,
548
+ )
549
+
550
+ if training_args.do_train:
551
+ if "train" not in tokenized_datasets:
552
+ raise ValueError("--do_train requires a train dataset")
553
+ train_dataset = lm_datasets["train"]
554
+ if data_args.max_train_samples is not None:
555
+ max_train_samples = min(len(train_dataset), data_args.max_train_samples)
556
+ train_dataset = train_dataset.select(range(max_train_samples))
557
+
558
+ if training_args.do_eval:
559
+ if "validation" not in tokenized_datasets:
560
+ raise ValueError("--do_eval requires a validation dataset")
561
+ eval_dataset = lm_datasets["validation"]
562
+ if data_args.max_eval_samples is not None:
563
+ max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
564
+ eval_dataset = eval_dataset.select(range(max_eval_samples))
565
+
566
+ def preprocess_logits_for_metrics(logits, labels):
567
+ if isinstance(logits, tuple):
568
+ # Depending on the model and config, logits may contain extra tensors,
569
+ # like past_key_values, but logits always come first
570
+ logits = logits[0]
571
+ return logits.argmax(dim=-1)
572
+
573
+ metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
574
+
575
+ def compute_metrics(eval_preds):
576
+ preds, labels = eval_preds
577
+ # preds have the same shape as the labels, after the argmax(-1) has been calculated
578
+ # by preprocess_logits_for_metrics but we need to shift the labels
579
+ labels = labels[:, 1:].reshape(-1)
580
+ preds = preds[:, :-1].reshape(-1)
581
+ return metric.compute(predictions=preds, references=labels)
582
+
583
+ # Initialize our Trainer
584
+ trainer = Trainer(
585
+ model=model,
586
+ args=training_args,
587
+ train_dataset=train_dataset if training_args.do_train else None,
588
+ eval_dataset=eval_dataset if training_args.do_eval else None,
589
+ tokenizer=tokenizer,
590
+ # Data collator will default to DataCollatorWithPadding, so we change it.
591
+ data_collator=default_data_collator,
592
+ compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
593
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics
594
+ if training_args.do_eval and not is_torch_xla_available()
595
+ else None,
596
+ )
597
+
598
+ # Training
599
+ if training_args.do_train:
600
+ checkpoint = None
601
+ if training_args.resume_from_checkpoint is not None:
602
+ checkpoint = training_args.resume_from_checkpoint
603
+ elif last_checkpoint is not None:
604
+ checkpoint = last_checkpoint
605
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
606
+ trainer.save_model() # Saves the tokenizer too for easy upload
607
+
608
+ metrics = train_result.metrics
609
+
610
+ max_train_samples = (
611
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
612
+ )
613
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
614
+
615
+ trainer.log_metrics("train", metrics)
616
+ trainer.save_metrics("train", metrics)
617
+ trainer.save_state()
618
+
619
+ # Evaluation
620
+ if training_args.do_eval:
621
+ logger.info("*** Evaluate ***")
622
+
623
+ metrics = trainer.evaluate()
624
+
625
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
626
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
627
+ try:
628
+ perplexity = math.exp(metrics["eval_loss"])
629
+ except OverflowError:
630
+ perplexity = float("inf")
631
+ metrics["perplexity"] = perplexity
632
+
633
+ trainer.log_metrics("eval", metrics)
634
+ trainer.save_metrics("eval", metrics)
635
+
636
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
637
+ if data_args.dataset_name is not None:
638
+ kwargs["dataset_tags"] = data_args.dataset_name
639
+ if data_args.dataset_config_name is not None:
640
+ kwargs["dataset_args"] = data_args.dataset_config_name
641
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
642
+ else:
643
+ kwargs["dataset"] = data_args.dataset_name
644
+
645
+ if training_args.push_to_hub:
646
+ trainer.push_to_hub(**kwargs)
647
+ else:
648
+ trainer.create_model_card(**kwargs)
649
+
650
+
651
+ def _mp_fn(index):
652
+ # For xla_spawn (TPUs)
653
+ main()
654
+
655
+
656
+ if __name__ == "__main__":
657
+ main()
benchmarks/Generation/Visualize/analyze_mdlm_denovo_gen.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ path = "/home/sg666/MDpLM/benchmarks/Generation"
4
+
5
+ res = pd.read_csv(path + "/mdlm_de-novo_generation_results.csv")
6
+ average_ppl = res['Perplexity'].mean()
7
+ print(average_ppl)
benchmarks/Generation/Visualize/esm_umap.png ADDED
benchmarks/Generation/Visualize/esm_umap.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pandas as pd
3
+ import seaborn as sns
4
+ import matplotlib.pyplot as plt
5
+ from umap import UMAP
6
+ from sklearn.manifold import TSNE
7
+ from sklearn.decomposition import PCA
8
+ from transformers import AutoModel, AutoTokenizer
9
+
10
+ path = "/workspace/sg666/MDpLM/benchmarks/Generation"
11
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12
+ esm_model_path = "facebook/esm2_t33_650M_UR50D"
13
+
14
+ # Loads ESM model and tokenizer to embed the sequences
15
+ def load_esm2_model(model_name):
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
17
+ model = AutoModel.from_pretrained(model_name).to(device)
18
+ return tokenizer, model
19
+
20
+ def get_latents(model, tokenizer, sequence):
21
+ inputs = tokenizer(sequence, return_tensors="pt").to(device)
22
+ with torch.no_grad():
23
+ outputs = model(**inputs)
24
+ embeddings = outputs.last_hidden_state.mean(dim=1).squeeze(0).cpu().numpy().tolist()
25
+ return embeddings
26
+
27
+ # Load a random set of 100 human and reviewed sequences from uniprot
28
+ def parse_fasta_file(file_path):
29
+ with open(file_path, 'r') as file:
30
+ lines = file.readlines()
31
+
32
+ sequences = []
33
+ current_seq = []
34
+ current_type = "UniProt"
35
+
36
+ for line in lines:
37
+ line = line.strip()
38
+ if line.startswith('>'):
39
+ if current_seq:
40
+ sequences.append(("".join(current_seq), current_type))
41
+ current_seq = []
42
+ else:
43
+ current_seq.append(line)
44
+ if current_seq:
45
+ sequences.append(("".join(current_seq), current_type))
46
+
47
+ return pd.DataFrame(sequences, columns=["Sequence", "Sequence Source"]).sample(100).reset_index(drop=True)
48
+
49
+
50
+ # Obtain/clean sequences generated from ProtGPT2 fine-tuned on membrane sequences
51
+ protgpt2_sequences = pd.read_csv(path + "/ProtGPT2/protgpt2_generated_sequences.csv")
52
+ protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('<|ENDOFTEXT|>', '', regex=False)
53
+ protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('""', '', regex=False)
54
+ protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('\n', '', regex=False)
55
+ protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('X', 'G', regex=False)
56
+ protgpt2_sequences.drop(columns=['Perplexity'], inplace=True)
57
+ protgpt2_sequences['Sequence Source'] = "ProtGPT2"
58
+ bad_sequences = []
59
+ for seq in protgpt2_sequences['Sequence']:
60
+ for residue in seq:
61
+ if residue in ['B', 'U', 'Z', 'O']:
62
+ bad_sequences.append(seq)
63
+ protgpt2_sequences = protgpt2_sequences[~protgpt2_sequences['Sequence'].isin(bad_sequences)]
64
+
65
+
66
+ # Load MDpLM generated sequences
67
+ memdlm_sequences = pd.read_csv(path + "/mdlm_de-novo_generation_results.csv")
68
+ memdlm_sequences.rename(columns={"Generated Sequence": "Sequence"}, inplace=True)
69
+ memdlm_sequences.drop(columns=['Perplexity'], inplace=True)
70
+ memdlm_sequences['Sequence Source'] = "MeMDLM"
71
+ memdlm_sequences.reset_index(drop=True, inplace=True)
72
+
73
+ # Load UniProt sequences
74
+ # fasta_file_path = path + "/uniprot_human_and_reviewed.fasta"
75
+ # other_sequences = parse_fasta_file(fasta_file_path)
76
+
77
+ # Load test set sequences
78
+ other_sequences = pd.read_csv("/workspace/sg666/MDpLM/data/membrane/test.csv")
79
+ other_sequences['Sequence Source'] = "Test Set"
80
+ other_sequences = other_sequences.sample(100)
81
+
82
+ # Combine all sequences
83
+ data = pd.concat([memdlm_sequences, protgpt2_sequences, other_sequences])
84
+
85
+
86
+ # Load ESM model and tokenizer for embeddings
87
+ tokenizer, model = load_esm2_model(esm_model_path)
88
+ model = model.to(device)
89
+
90
+
91
+ # Embed the sequences
92
+ data['Embeddings'] = data['Sequence'].apply(lambda sequence: get_latents(model, tokenizer, sequence))
93
+ data = data.reset_index(drop=True)
94
+ umap_df = pd.DataFrame(data['Embeddings'].tolist())
95
+ umap_df.index = data['Sequence Source']
96
+
97
+
98
+ # Do PCA
99
+ umap = UMAP(n_components=2)
100
+ umap_features = umap.fit_transform(umap_df)
101
+ umap_df['UMAP1'] = umap_features[:, 0]
102
+ umap_df['UMAP2'] = umap_features[:, 1]
103
+
104
+ # Visualize the PCA
105
+ plt.figure(figsize=(8, 5),dpi=300)
106
+ sns.scatterplot(x='UMAP1', y='UMAP2', hue='Sequence Source', data=umap_df, palette=['#297272', '#ff7477', "#9A77D0"], s=100)
107
+ plt.xlabel('UMAP1')
108
+ plt.ylabel('UMAP2')
109
+ plt.title(f'ESM-650M Embeddings of Membrane Protein Sequences')
110
+ plt.savefig('esm_umap.png')
111
+ plt.show()
benchmarks/Generation/Visualize/mdlm_de-novo_generation_results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Generated Sequence,Perplexity
2
+ GEGQPTLDAEGMPKADEGKMMTFKSENFTDDSVENLVLTSYGVYNPVIFTDLVIRTPKEGAVVPPTVVLMNGEWTEVMPNLTGAETFDTQSKYLVNGLKRYGVSKKKHVQVYQMARRTKDLLTMIPDGMASADFSFEAPGRANTMPAVGLSMDSAVGQPNLSRLRGVDVFFRYIVYTADPFGSETQNLEVQASERTNILFLNQQKKKVKSGIVVQMQKGILFERFGEVMDGQRPSNQRVGSQDMLIGVGALVKLNQKKIRTRIIQLFNLGYDDSEAIDWLPTTVAYLDSTYYVAMTTIQSIWVTDYYGLQGLFPFNQNKIGKHGVEVKHVQYFLEFVEAYVDQLEDLFTEYNERNSKLSNSNAIQAITIAEYQQLKDQLQLLTTENPIVDSSMIALRIKKLDNSATRELVSQFNRDVERATPNITAAQISVLKDNMTILLQDELMHMSDLNGEAADATYTLQAARESLEQLTTAAEFAPEYLTIEEQDISDFKARMELLKEIVGSLSNRIESAVKNKQDKEGIQYAMYKRPNRIDILIKNINLKFKGIQFQIDSIVAKVRNMEAFIKALVYRLDNVRISLVQRVGNRRHLAKKEKEPETVLIVNLRDYRSTLILFDIMTNLRITDEGQPENILRMKPVLDNADIPTENERIPSLSMPLMVRYTTVVINLPELDEHKAPLGINIVVAKDAVVSRLEWEWEGDVFKNKPYRIKRAGYGPDYVRAGALAQVFIARSDTATQSIAVRKTANEKFLLRLPRLPGSLMGEVVLKSFATFHQAFGTGRNNVYQRDEDSDKKYNQTLIDYWFDLNRFFGLSQREEGVQMMLLVEEPFTAGILSKAIVFDDDKKSAFLMMARAFLVYLPLHHSPDAPLEVANNSPKNIRLNLQATIAARG,18.2131
3
+ WTTGWGVSQDLIDSASMSPGMIWILLVDSYKERWFGTYWWGTSTCKEGAFPFEDVMQRIELRILKKYFYYLAIISSVLTLLMIIAKLVTNCLSFANIHKSHRYFFCVNCFWFISQLCNDLSAFPVLKKLESATRFVIYPSPVKAVQLDTMPDKIVLYLIFLNIFSTHTVLVFQSMSLGLITGIIDIPTAKRIIVPNLGILVIKTFSSKNCKLSLLAPEMWPKCMYDYVAFKNIEAQIVITSTSVGAVLCLLLILKGSVFVSSSYMFVGGKPANPGTGTRMLLPKDDHFEHKFCHNFSNVEKISASSYAASPEESILLLVNKEEHNKLRVLAVVPKGARNVLVIEIMKLKPFQTTYNDLYLPRDENNQLQKNKKVVSVGKIVLKDPASWVYLPQGRLKMNFKKAYIKSGAAPILLSFGQRLISVDNAVPLAKMRTTGITVLEMAPRGSRVQAIVVLPGQLKCGKSETVYWFTVSSIDNNRRGIAKYMGGVTYRGRAFIDMDKNLAGPPLVSDAYQMLFNDWLEMLCGAMKATESEKVKSRKGASELRVIHRSHHGCIVAILDDLYRLRFDLVDIERIGMINEEGRINGKIRSFEFQNFMLTSKNDMKTGFVNMPESFKPRTILTGDLIDNDWAPSFDLAAIRHGNIQVLVDGNDLEGSEEATNCHHGNAFSLGPQGRKVVVGAVVAPKTATPKCNSISINLQELPANYVVLGAKALTAQHVANFSVNGTKHDKKTCKQHEEMWKMYIQKSGQISKQASIKQCAILLSLGKLRATVKWFLGKYLERIFHVLLKGCKTVETIIDKGRMHKIKLVKFRFGIWIFLSVVCLAELFCIMIFVAPEIVRGLHTLILFLLFMMLLLLNYADTGHEVTGVPYY,18.1991
4
+ GIISVIDLGAKLIVPGDLFFVLCGKNRPPTSGALQYTILHTKKKLFCCGPTHAKHICLINGECIRDGREKLQNLCKTSGKWTEVRRPKSTYSCSLVYRRVQRRFCGPQKARAPVWILYIVLLSAIGVIIAVTINWVLQVCIILGAVVANGFLIRVLSIVDTRNQIITRGLRRYGIYRNSVKVACTSGSVVIVRIKFMEDQISGGWRPASFIRTSFKEFLPASATAFSRLADCNEKLIEALV,17.785
5
+ RARILNRSLESARKYLDFLKIDKVEFYENEMTFRVFIEEAPEFKRMEITEDKIRLRLKPDKIRKFVELGNLFKYTDALQLAVQLEKQNKEELVIAEPEVIHALHKHHNHMPIFHLLEAFNDETVAEIILANIGKMPAFLFWVWNRMSDPTEDRGKGFNEKVKRKNPTIVSILDKQVYTIKGGFGAALTKSILGPLLATQNIKIKADYDESLADVFVGLHFVDGSIILRPWPITGKEVALSEEVTATDKVISASEVGSEEDKFQLTSIENNFTKTLLEIKKRRENAFEGAYTETGSKVSDKPVRELKANLKLIPEYQAERIDQTYWRKILRLSRSLISEPRGARAYLLRIGERVDPHRYRPAIGAEMLMGIPNSITTGFKISKTLGLQAAGLDLIQTFRSLSIRRMITKNFMAILIDKPGLKAVFWFIPLVPFIAVQLLIYGVLVGRAKPGNLVEIIDSMVDGKFETRPNGSPAASHKMVIGVKYSLIYPGNQAKKISLVRWNTALSKDVRGQAKEIDLWQLISYYLEKMRIGPSAVSNVFQSVHDGLKRNELAVLLIMDPKTRDDSMILDIMNLRIERGFVSLIKSYIHDYDEEVYMTYREILNQNVFLMKYEEYATMSADLEAYWLKSIEETNLRALRLPGAMRKQLFLANLCRISEHLDTPTEQDAFSNPEGITIDEGFTDEARAQGIGFVAGFVDEKEFEQRYALLAKVYIASLKALAAALADSGVKTGIKIGLGTVERIEVHKDGMMIDHVKMEGPGRFPIIVGGEVSPIVNGATIIPSFIKILADGKVDEGKSPNKTPTEKGEITPQSLYRGMGKTVVLNDNGGLQAHALTWAINDEYSYFVAMGTSNKSDEKQLAALSNSLDMTTFEDSAGRLFSSIVKAKTLSENGVITENGAEFL,17.7595
6
+ DIMLPKSPLFEEMATLGFIGHTLLAPIKPWTKATATMVGITGIGVTIYWGVPDMFPFSPTNHWWVKGMKAIVPSIIALQIIDLFYVVLTGLTSRFVYPIVATFYDHYFVNVQILVTGIACTLVYPETHGDVVSVDLLQCRTDGKLTQIPMEEALELINFIDQIMEKTKCKFNISEGYYEVLMTKKFIVKGGKGVGPDTDPEPCEKYATWGRLRDPTGPIRPNRAEKSQIAIYAVCGGAVLQKLGVPLLDNEAPIPSQLLIFAIGTVGIAAITIVALIFGGIDIAMSNPVYRPILAYSPHNKLLYPLSTWDVGYYNVPNVTSTYVVVVVPPALTIYSVANEAIKVETTPIPVKFAEILPTGETALLSSYPLTIAQTDLNARYERREADIFTKHEGMQQTFKGEVVPLVSNNRLKSPSGVQIGCAASLMTVPEEDGMTPPRIATTWFEGPYSAPASDPLMRMPGDFYGYGKGTMDGTVSNEMNGISHRPVTLATGGNVKFSPVMLPWYIGARYGLDIQHSGNRRMAHWLTSRAVMGFFKKNVARLADRVNAITLQVPSKDPDLNNRPNHAVMSRQWITAVEAIKELAICSLLNQFREGLGHKNDTIEADLNPFSGVIAQSSMAILKTAMGATRSSVAQLSMGMALEAFRHQMTGTAGIHYLMSVTGNGPGRISTALNKLDSPLPPAIAED,18.2088
7
+ MASLAAANKRRSITSIAVFLGIAAAVVVLGISGKVTDKNTVLDFSYGKNRGFKPQHLSEYVRSRYPAVVIAKGENLLRGGRFLPWVRPPGLRYVAYYDAIESWDIEDSLKELVDLRAQGLYADVETAAALKKASVSRSTITEMVGMHTNQSEPQFRTEQTKVAKSNGTMFVFATMSFTRGRYEIGSLMLSAIGKRWVEEPTPDTKMRYMKLRPSIQLLCRTGGIYRPIFQLGGPEGIFYHDGYGENSYQVDDFIWKHLERRA,17.9845
8
+ VYGLLTTGSASSAMATTTLMIGVLFGLFSSFALPLWSWLQYLTTTGITTATGARYFKNIMIEAFSSYSAAIIGTVSIVPLGSSIPAAASASAVGAFGAITGFALGIYSMLFKKMDSFTHWLFSAGAGLSAGLAGLISGIGAIQIGNAATATSGTAIPLFGLVLRIIVSSVQGLLGTIAAILLISN,14.5579
9
+ IGHVFHLLHMALPIWRPPLPVTPGEPHPRPIADLVTPAFEYKTLLRCPHPHVSPIFLSVVLWMIVALVLAGVMVAQALPAPTGARLLACYP,17.2759
10
+ SIIFIFMYLTNCLQWRQNGHLQMSGLLFATLGVSTVTHTMMLASRGLCQAQKQRIRRECTLFGLAVHFCLAVGLFIASVSFAVWSSLEGLDDDANTVAVMRWWGWTFSFERYATVKVLFDQGIQSTYIMSWLLLMTKREDFRLLLFFMLTMFASILVPFSRGAHFYSLSVAFSNFATVILPGVNGVGNEIVQQIIFVLLFTFPMFLLIVDIAFFVNLIFKAAHP,17.039
11
+ LPDVLYHYEERKFVITRSEVVLEPNELFIGKIAVDVANYNIKVKVDLRISSKYVVFNNSQLTWNDHFLQPLISDRLRWVIFRVCVGTSSPQLLIHIDMIENFLQQLLSFLKGIVVQQFVGKVTLIQEDMKIEEETALLIEIETYPEAELLKLVRNLIIKVEDRTIGSIRHEAQLAKINDWSAKRIISDLNIGDIDNGEHVLVSAQEELESSIMERLAGHLRKFVNVGTWTESAAIDIVARIYGSLSVELHEEWLVMLEYLFTYPNDYFPGMYTVQYYQNADPGELLKNHALIIDELQRLELYEG,17.8596
12
+ SQGLDDLIMTTVADSEKDTDLTTTADLNMVPIYVGSNETATSQLGMIVKRKRPEKPIYVPVHSCSKDDRACAFVNFFNLARDLGYIEQDEQRVTPDWRAIILTMAEDHIHLWSHPNVAILKLRVIGEKLADQRETMKDPLNTRVEQVALVQAPKIDLIRASYGSLLEYQGEQKKYRINNTLSRCESLCADAGVGYMVATDAKVCQVEGETVDNNTGKDGDKTEILRAHFKQPSAFNKGSGVLRGHIMMTLGIGLLILLLYVIIVFFLHKIQNATFKFRIPRVAIATSLVADACMSVLAAGIAYALANFPVFTAKIYAETAVVLVLLVKGRLFIGKNKEIPMTARITIIRLAGAVLGFAATIIGIVILDPVLSIDGVSLAPGKVPQLLCLAQTAVREGGHQTWDLQLFELSKLSGMKIQPGKNIVRDPDKSNTAEEPTVALWDMVDVPGDIDSALQKDPVVKAMFKPHTGETMLMRQDIWAVQRWVMNSLGKLRLGKEVAILRKYVDTTHPAGCCDTGDAAIRQAQTEGKTVHSDGVRVLEDSVRMVGLDGDGKTCVGQAEEQLIQKFPCEKKMADDVFTSARALALNASTLIEQTDNGGDEWGENDTIKQVIKTGRKVEGDAAEIATPDASWNDGVYRKSAVFSSVTSDCITDIAGRTNTIVTIKELKGPRSLPMITNLRKRTALILAEMKTLIGPGGLYIDKTGIDCKVKDEGKIDSQIKYEIRGIELYGNMTPAPGIKPVAFTGKGGSGKSTIIRVKGSVVPSFVPINKFGKGRGERRTEKNADALLIPFSNAKKLEGETKVLIPDFLFKITTRNVVTVGRIVVGGVLDNSDVFEGFDSIKLVQAAMVEGQKQVTIVGINRKEGPVYGDNLLLSADIETEEYMTYGADQALAKAAILRRSGAVLFALVFGGNPNPRIFKGTEIDDVWLKIKPRAQMASVKFDEYIKQGTIAVHGGGINNGKYLVEGEDDPCDPNDQPLP,17.9744
13
+ MDILKKLIGLSSLLALFLLTPDLLAEIVRDIVGVSIGEMPEIYIYLLAFYLLGLMLASMTTSPPGFSFLTTRIIYCIFYAWYYILLTLIVTILLIIGKTEGNYKISKQFGVTENGVIMNMIQKAWNFLSDISTGNYLITMWPLNHFGVVPWFNKAAGIAWFIGPYFTYRLSQRPVNFIFSALSFVIKKWLSKIWGKFVRMACAFTSWVFLMGVATTLVLVIFNEMKWIKCSILNSKQWFGKLLGYMRNSLTVLCQKTSIGINMMLVSVLILILIGTIGNGDTAIYWHILFLIYSAIGIFAFVFVVQIVVCNKDRGKKTDLSPAVYAGLAELLPSLSTSYDNVNLAPQDYLTALNVIDSLLIKLVLEIIVAGFLSPLLYDFRLSSDTKLIFCFISLILFGYVFLGFEKDKAESEIGHSRVPSIPRNIHNHTAATVVRLREVLYELFTSQDEAHLGAHEKQNVSKVLLFALFFLFVSTYLTISTPVSNVNCTSYRLDTPFSKRKRQLSLALFSIGCCLDGFSTMQHMVCGEEFQLDSFFKFFVRFGKVIGKRVAMFFFWTLAKALASYSDAIIAPGYSEKMAHFPPDQFNGRAVDFIDVDEDLFANGFSEGKTRVAGPGEIVIFYQIGGNKFEAMFTVSEPIKLLYYDKGIIQAEYKSEFGCELITVGFTTPTVYDYLSPVPAYYFSLVKDPTGTFFDLISVPQGSIGYVNAKFQAYGEFWFGRIVHTGQNRNYITSLPLLIHLKAGNILFWLICVVDLTTTSILGKGNKRAVEVYGLSLLSQCDSFHTEVKIIEEVKRFFSLKQRKYLSSIFYTSYMNIFLALQYKAFAMPINAGVFVTDLDEQAGILIQAKKTRRRIPPRLIFVRDRVSDPNIKIENSSPLFNVYLLSCGTDYTSKKIISIDNRIWALLDGIHKEELSYEFNYE,17.5258
14
+ FRFCYTWVVLILVPSIFIRSFLRWESRFYFLKELERKMSGGDDLVQRSEQVETSCPVSSRCNQISEKILNWIKCEHKRVLVGGDVEQIIFPYTSSPTQSAEFQKMHQFQFLDDSGTQEANYVYQRIDETGYFRFADAAEEFTGALDVEGMCENWNVFLCMNVSTQISLILNQAKAYMFTQVLLQDGTPLVQFLDPDDQRLLVNCEDNEASNEMQDANRYQQILDVDYLLLEIQNQYYPAYFLVNLNHADCFKGTPLFTPKILEGVQDVVTCRRLVWLKFALNRYDPYDSVGSLCNTPRYMRLTRRLMENWDLSGVFWTSLTFLLGRCW,19.2309
15
+ TPGGFIDQNREISHATRNADVNYSLLLLGHYTALAGMHAMYLGPDNVVILTEGGDFATLPYTAAPTFTAQFWQMKILAAGFSVVIAFGHFVFGVSRFWHGMLDVTMGHSSALSTLFAGHIGHLICHAGGSLIFFNFDSEPVVGTTVTIVLPLWFTHHNLVLIPWHEWTLNHSQLVQVLFKPNMSFIFAFGGHFRGMHWGIGGVNEFADGHNTGLQYHHSFFILLSLLALAVHALQISRGIIWPARNWNRAKDFWNSDTVPWISYVVYTDAFWALLAYTLGAYWAFASSGNLWTSIHQRYLQSEQVTVTTHATAMFGNMAWGGFITPVHSWIFNQGKLWSLSQISHVSRGWRFVLNSFHHGLWFIALVGIATWFYWRLHFRWGDTSLAVEAGFWNIHWVTSNAAPLMFFILAYILVATETSNKY,18.3108
16
+ RVFFVQNLAMMLFLLLILIPLFGDKYDVLVSCTDEAFVELNYLIVLAKQWEIGCSERVVPMAAILAFLINFGLICITLVVGGNVIQWYSPKLHEKNHFIWSCLETIMVITVVLIFLQVLVCLGFTNLITALCWLPGWKLVAPWQSCALRQRITLALLLLKVPAFLGILLHVFSKQGWLIISGVQQLSYILSSLTMIAVDLWGGSIAIQDCRGKHSLIVLKVRVLMLYAPLLSSYVYWFEYAVGTCSRYFLEIVDFLVLAFMIVVLLILYGREYVERLDNIYSLVDGANVAESLTHTYILILIAYPRTNPNRIAVHIKLISFYVWMIVIMVFARKALRRLIPCSHPFGPKPTVSDKINAVQSGSTKAEWESIEYFVLFVFVILVLLLVGLGCIKLYDTFWNPQEDLDTDIKTDPFNNSLMTIIGVPYLVTVVIRKTMSLLPLTTMFKIVGVLIAGRLNLTIGWAMAYVTAFWLVTIECIRFFHPQPGVSAKPECLRFALTTATVLVASATIVFSADINRNHKGEISKAAGFAWLFAYVLLMFLAVAFVIWKIAERGVLGQSATVSRSESEEAVVYQTAKDARADIFPLVDDIRVTEPKDSAGRVINLGMPLTPSGQSKNLLPAPGANPVPTRPCVFNACWTVPDTVLVFCTVAAQMTLTFRELVLERVKDAIHTGRCVHFWPDLAICADVFDKTGLDNISGVRMNIAHGESELSAIEFNIKFQ,17.5525
17
+ RWSLATLFMVISLLPVAFVNFFSFKEGFHFFGFVFAIITLGLSGIAWITKLRDPVDKMFFFRVRMLGWLRPTLVYFIMYGILGIISRLTALVRFKAMPIFMQLGHFFPVVNGILIFVANRPMKAVRLQARILNRIARGRWTGASYPEDKPGETMTDEEFICLTQSGMNLGDSFQIIENGTLIPNWLTSSPLKVEVLLYTYFLLGLFGLCVSLRLAGCGCLPEVIRRMWCWIWFALFFFSSFWQVFRQLSALRIALGRARWKKFDFGPVSFGLVVLFLVAVFLSQVLLVAILDIDEMRQKFAEVQTALTIPRNLPELKDSIKSTLLPFQGELQWYSQWTSLIVYLTHLIMTGMGKAMELSWQLFNLIWAFLCSNNGFLCFFQEYFLKLFLWGSAASILLFLPSILNLVQRLVPFTILIFFCVPPLIAVHSLYNRGLGVFENDVGTLKAKAVQTSAAPDWQITETNGPDEDYESHIMAIVTFVNLLCLHIIALLMTGTNSAQPLLFELKFDAKVFMAVFNGLIRTMSVLYSRGCETYALLNLLASILLKLALWFWAEIEEDEFASNISLGTLLREATRHIPVLITPVAMVNGAAGAGLTLLWPTRGHVYLRGAGNKRPAGRTSLGYMAGPSGEQFYIRGAFWMASIEISAGTGDVEINGSHIAFFALKGKMIKLTLDGKPASKIKDLVTRYADVAVDDKIDFEWDALAERSIWDKKQLKKGMQLNGSWPKTNVMPLITGQDMSEKYLYARVDLQNFNYNVKGASNKEGIHIIDPFGSLLPLVVFSSFGIIGLGFLYKYNVWQDTSTLQEHFQKRKTTISSSKPVKFTMDEPKLLGPMVFLTFQIVVMFLLGFHKFPWLYFAYIYKN,17.5249
18
+ VYPAGAALAKAAQKALENAIQEHYEVAMREELEANPERRLIAILKGLARVRSAYAEIDIMRDQAQNAIEESIEYANDMYKEGSYAIVTPTVRIHHSIAPVEMQQAIELMADLAALGYGDAGPVVAQVIQLPGLKFRGQTHPGASPYKIDVDVAIAAINLAVERLLDALQEVYQQPPKTVKVHRVSASHDVPLVFQVQVFVQFKINGAREGDFIYPGRDVSPQNRKVEKFDERRKSTRIIPIYRLRLQNPGAAFALKDHEAITLGFAQHYLLGNWPIEVGETPRTTQDGLPSMAEKAADSTNYLLAAANFMHGKPDLEVQMILKANLCSTEKKVTKLDRLALAMNYAVYLVMLAQDLSLFLKVPQNVKVHDGMGGDYQIMMSTLPSSVTEAEIEKGGDMHVQLKALLPVSEPFDAEDVIFGQTARVDEYLVDAKMAKLLRPPTNCGTNYKENSENAQYFPLGRNINLVPCTMEDGSLGLTGLEGFSLSQAGNQRMWAVNLIDRQGKVALLAEFVLNELISLSDNAEQIADSHTLKVVGVRGNVGNLWTTGTMSDKIEYTPVLMSGETKLHASLGHLIASTPDLTATMQEKKLTLLLSPPAYDETPPKIEKLVWPYEKNAEVTGPWRNITKAIGTSISDLLSLSNKMAKVEQERDAKMETSELQKYDNPEIRISRKLVSALVIIISLLIFALRHRFALATWRGCVVAIGTPSTPLKRLSGIVRQSADAGITTAGSKCSRIRIIIKRGIFMTTLGISSTIITLVFAYQ,17.9413
19
+ YMKRGMVHRTLTLLLIFMVLALGFAIDIRGWAMFLPEATLMVLSMLGFFRQGASDPNYDAVMPGVVCEIHMRTSMLFFSWSIALAYLAMLVNSAGQITQSPKIVDSFTKIVSAGKGLLALIINGITVAKPTDGDELFSQFSLTLTLTNIGSMSIVPQIRLQIYRWLMKPPHGFLGIFPVLSAGTSLAIALFNFWRNSLTEQYFKFLSDMTNSINAQVASMVAHRSMAFNWIGTIWQYCMITVFLLGFVYFYFLSETNGIQLRLDIDHSCGFSNVPIVFAHEFLTIACKAAAEILKSDSDNKVKVHVMSKAENIAGSGQLWLEVFESGSLPGANASIIQVIPNRKREADIVGPGTVDGLDGATLLLSPNNIFVPPGDLVAARGNKAAAGATLGANGTLTVDARKYGASKINVGYDTEAVGLAVCTLVIGTGDSVLPTAKKQMDNVVAFLIKEEDAWALQQPLKRSAERGYFALTMAMNPDTVAFATETGLRVCDLMNTLGDLFSIGPAGLDAEAVGAQGLSTTIDMNKHVFFGLEAKFSSSNINQPSSWLGALEAGLGNWLSLRNALRGDGPQPQGP,17.4011
20
+ AAYAQKNAKIKRKLEETVLCGGCDEGEYRRESSFGAISASDGFTPDWEHNLDGQPGLYVTKLIYKYIQHPQYLYEILAVALLGVIGAKTSLFEGLSHPKRRTESLAITFNSAHVSACLTVLTDYTRQLTYTLSACLVTLVSTLYAVNLIVRDKKIAADIQFFVEASDYLKMGLEVTRNENVTPVNDDDFFSHILWLIDHTKPTMIEGHFREYKLVNKFFILEEHGLVGKRGSMMDPINTFIKCEKLLQLIDTKYGGSVKKLKSSKVAFYNAVSEECAPVKITLPKTSDILAHRYVSVRDIPARGVPYTHSFSSNVVSAITDGRVMDKAGDFDEDLAIKIMGLKLDGFTVMVYRLDGFRMGETSVSKIATLEALIKDDIVTHELITKSSFTRDYRSMERHDFVLGSNFPYCSPAHEDTIEFKQKRQSYVGRAVADAKVEELELPATGDRGEVKDQVAKNMKVLTNQAMKVHVGTMLAPDGDIYSITKENVLPACYVDVKGYLTRRNILGKLKKFMDVFEDFAKVINILDDTGSGNHRFNRYWTRRDSRLGKPLLLTHEDDLETNVADNRRIRTNKQRERCLVRVLNLECEKCHLPEMVVLGIFIGSSAILFTLFTLMSINGVNVLLDQVPPSGFGASIEGAMREAKVLVRLGEFVANKANMFSQERGGDVPAIVPMTEEQRSDLNKPCKEERKISKCFTRMHGSWGGVKRMDPPFTRGGYLMMRQTRMGIWISFDKRKFGKTQKFKYLDCGMKDPNVWKRNINVGCHLVNTYADTNFNCCTQTIQAVVESHWTEPLFVARTFQPVSICLIGMLQFSYGPVMAGLKTPKPHPGTLRVVNVSTVNLMLFVLFNYLRPAAYNGFYGKYTKPFTLGVSQKPRAWSHKIITPPGPKQDLFISFFSHLVVLIFMVVMWIYFAGTVTPFDFQYYRQVSLDVV,18.5249
21
+ MKYNNYALLSTVTILGLVFTIFNWANDWNLHLNFGLTTYLFVGGTFLILTTFGVGQDDPSYLKGFTINLAGKMIIGTHLPPLVPTPFSPFIDKISKHLAGAHVTISAVTVDNIIGTLLKLLESGDNREGNWRAHRLAFHAIGATIFLWEIVISIYIGFNDGFNVDNGEKVSKTAELITTPSGTLDHTGSAESWSFDDDSSPLKWYNGFLISKEIKYKHRPLFSLTTQLSILMYNRIFIVLQLVIVHSERMKLSLFDLFFQNFFFFSTIPLDLEGLSGEYRSIGGKSDIRTLIVSCFGSLLHG,17.1279
22
+ KNEKTNSSSKKVQVADEIYAPGKPVAYVNTGTTQETIASDAILWLASEFSAIIEIKVVLFGPVTNDVYSCNIANYSPIPQGLEVVHKKYTNKNNLWLFTTGYDLNITFLNTDMLNLESSFLIIEGAISTSRMTSDKEITNFEVPGNAVVLCTYNAPSITSKGAKAHEASGGLAANLPREEQLQAILRSHEQYVSRKMKADCFPTTKAVNDGRILLFYLSAKNLVDSLPMERGDFNLIYQKMEVKIYLDDLLKTREEIQAARAFMTEFIVRQNGDIKLLGLSEISDTSDGRAEVLDLPLESGNSLSSEVDAVLVVGQLRAMIHGTGTFTGVFIPHDLISSGIDPESDREGIGNFSRFDRESLVLFGIGVYIDGVNEIGWFKKTPIAIGIGNASYRRSNCLQISFYCDVDANTHEDTGTSKGKTLIMATNEYSIAGAICEACGYDVEGDDKTDRQIVVNQPSAVTVAGMPGLVAKTHNGFRNFEKNFEYLNFPVSKVLAEEGGLDYFWTIPPGNYQNNVPWNPVRAQMTSWGVSTTATLVFGVTYSRTLLVSLRVNATLTTNSLFAFFASKLSHINTFRTGGIISGGLCSVLILNFVVAIYGVSLRAFGGALLTYAMVMIVVLFCREVWKVMYYADIYGKQDLIIFELLNFFVNFGFILTIPLLSTASPPGSIDIKLPGILRTLSLYNDNQQRRTFIGKLLWDPESKVYNLKSGEAKLLGANASGLMAGGSEGAVHEVETDTSNLVFRSDVSSP,17.7156
23
+ EGEVNRIVLDLSGTSDGSVIIEANKVTRDNVSDALLKGKNFNAPAKTSSYPAYVAASLERQDPKKTFISFFKHAHNNAHGGQGRIINLAFAHATQTKRFNVFFEAYKKHGLKFDQNTFKFHVPEDMSRKGTIAFKGNDGEITLVDVFTSSFRQQISQITIRQGLWDWKSTRKNELGYFNNTIQFQGSKTTGSADLIFALSLLGAIRTIREYYPFKEQYVLLHRTWTNLQKKNKASWEWASARDKGQLNTGTKQTFATSLITELPIKSFELMTSARSLPEMEVNQQYEHYRIREYYKCRGAGEDTLMKGITGSGADATKVLMISYMLNEGLVLILDYSQQNIKTGNTIAILKEQGLAIKTSPSYSIQRLTKLHIYAMENLEIFPLHREQVNVMNAVLLGELGVAADEVSKANFNNMPLPSRQATVLSINLQDKDKNRKVLLRALGDQNSFIPPFDKSDVQNTVNLMESITKNQAITFDLRQGNGRSNQLIDVDI,18.2889
24
+ NTTRNPTENMPTPRSWLTEGRPYIAYACAKCKSETDKANKGLLFVTKDKIIIKSVPGIADQIAREVKEFFNVQTPAEGWDLVVGDVTADASAGVRGVLGGIVFTQKGSVLQALAVAVTSIGTMILFLNLFSWGGGWVTMFGAAENIITSLAMIAKLVLENKVLLLNIGMSGAGICLMMTTDVSPSVLTANFLAYAMIDTIAFAGDAITYPFTIDIGDAFFKFYGGAEIESVYNKQSKPWPSWVAEQLSFASASNTGAGVTWTFSLTSINKSYTLQFLQAVGLLLSAQSRPPDLLGSEAALTFNVTYVPLGFEVNAARIKTMLSPTKNVNQIGNLKPFLKHLTESLGNLKTLLKQRTQITEDDVDVRKLATSIEVPEKNLLNNELNKIRYANFVSKRLAVALNDEIPDLYKVNDLKSSHIFLKSNANLGNGIERLNTGIDIVSNQEPQMLTMLFLKGRLIKNNGTTAPLTLWLKYISNLTTLTNIGISVEESANRFRNLQNSFFKNNNILEINIQVIANPTDAEKELNLVGY,17.3426
25
+ GAQNTDVILGALSNFILGAFGLYYWFQWGNVILHQAVIMSFIHLVLSPDWTIWFYPYFVSEGCLYRVVLAIVQRTAMTLHISPEVSKYGIRAALSSPQEMYSLSRGDLRWFFKDLAIQKVRWRRMPPAVMILVLFIAYQLLQTKTITPTQLLLIQGLLFRVYGNLMITITILGTVMGVSPFTVIYNGWGKPKGITYCEFPSAFLFLLEDYGSGEEMTSIALPASLFVEYTEKASVIRAGYILSQVDEFSIKNMITRERNLPKSELLYVAADSGVNHTLNICQFPVSDTYLIKYSFIPYKLYIEDGKKVEMPPNKVWDAIVIGHYSQDDYWQLAAFCNQEWDFANFEKMLARPQRLVDTCGMALAATYWALLVQVLGAPILDNCLWINTFAILFAAGILWQIPPLRQDMRIDLSARFKHSVIVVAAYPYVLRLTWSGQSQQKFDLFIYFFLAIFTLSFNSVHYTADPAREQFEWRDSTGKDIPCVFLFGLTVTYWYGALHTGHDPESNTGLSTAKTSFDWKSQFQPFDNQYTRQATELLGIIPCATLHRKCRETWTRQRVFNVMVDMQQGSARFIFLIQDTAFNRNFKGGLIQDRQDLRKMLAISPGEALRAVIHRREHAAIEKQLNDVRADELVVAAQTAPGERVQELLRGSGVSYSLTNFVTFKKNISDDERRVPAPELVFQIVIVCCWDSRIVKALLAIITITSLAVGDLSGVFILFRS,18.2048
26
+ GELPALAGNRCGEAKLFDILARPDLPRRWYIHLGSVFTLMLVLTFLGAFIGTGCWVDGGGFGKFIDRGLSQAPTFGPQVLTHLYPEAWAHFFGIADPAGGYWLYHIILFSGAHGVFIFAGGALARTLRLGRLLGMARALGMRPKHCAVGAVGVILFLTAFYYLPDGNPTFTPDQGYESGSTGTIMVIDNGAVGLLFHPLFGAGLTGTFHTLTLAHEGTASGEGLSNLSEGGTESETYAAARLNALFRLVANQGRAWRALHIYTLPFLSLGVCAALGLTVAHAWTAFDYNNFVAAARADSFKFGANNWVLAANDIRAGAGKFVHAGDEVLPGELIR,16.0959
27
+ ADFFVRRQSTKKLYGLPLDGSVNDSVACIWGFAVFWNGLVFPWVFAFVGLIGWRLQIRFVPGSVIGLFKFELILSLIPDALAHFGVEDIYANPEYVFNFPRGVLTFASTHGIRTLRALRFAYPFVALFGRKAAGLFRRMGVVCLMAMVIGVGFAVAAFFFGELMPTMRWTFGEGGIIQTPVFAAGFRSSDVPATALEAAHFLVFFLLGLIFMAIHTGAAIFYAGESAARKNEDSQTFSWSSASSARLTRQRDREILVRRNGTSGESPGLA,16.437
28
+ MSYLYLVFFMILILFHLNLLTYNIVKKKPPFNGKYKKWEFKRAFDRYPVGYIYYGHGQWKDERNKTEKHPRDQ,29.4763
29
+ KVAAIGVPFFGLLIALLLNITMVFLSQTTLSKYWFAWHIFAIILILLGLLVNVLVNQGSSGSTTSNFDSGMLAMISVGKALGWNIMARYTPWQTGTLNSISWFNIGGAVTVAVMGKMAGIELIERENSRTPEGFSSPWPVGQTPAWMGAGPIGGVIAIVGISVSAVAVSALANISVVDVSNISLLLEIPVNSIIMGEGVGFYYLIMVLIMGMITLAYSGGFFSAKFGGYSERLGADLAGARTPLNVYGENIPKVMRATASVPALFRRPVANLALSLWILASLGVMVTYFESVAIFNRTIENIGKVAITNGQSVDVMGFTDVYPLDVDESNFIAWRTAIPPGVLVGVTPPIFGRIELVAVNAGLLKLERKGVAQVIDTGPESFELEAKMLAPSMTGSFSTQAAIGGSAFAAMFQSSTGANSVFVSFSKGSVAFSIMAGVFIGLVVALMLAGLNWNPGTVMKKLMMSMTVVSAGVSSIFAMVKPLALTTSSFLLVESVVIFSNSIGASEFIGFAGGAAFMVNKQFVRALASGTGALVIGGPVFAIGYIAAGLGSVTAAADVGRAAFIMAGIAGVLTGVSMLTGSLVGSAKFPDRSEGKMKVLRNWWPGYSIARLAGRFETSNLLMFFTYVADQLGLLSKDLVRNAHNFAN,16.5548
30
+ NWYNIRAHNYVAGTTMVDAATKPALATSIATQLLGTSDYDTISKLEHNAKEGGKINLIMTNQFPASGKMVIQQGYFGRGSAVPYTNRLPLIQLLSLVDSAATADKEQVLSVGWAIDAIVERRASKMVLYNASKSFLLGKISNIMGSMLVNIQISAAGQYTILTSYDSILTSKFLSYNRPVVDQGAGMINMATGTTVGANGQLLLRKVKEYITKVQGIDASLLAFAQRGLGSVTQASISARRPTRNRMEENAQKGAPGEFSKVTDAGGGHLPGSKMVFKRILIPVFMRYAIMDVRVKMAKTTYCPQTQTPFDKWYYTLNFTLRGTGYTTVVANPDKTGKDVMRTTMHRADCTGFEVAGSVDLGLQDIQVLEMGQFKNFDVYLFLGQGEGSDKYAVAKLTNAPPIAILNGFSSTMTLKAIWYTWRWPTMTRFSLAVLYFAAGHIMTRKFQNTAFMRDGQARQV,18.0029
31
+ DFDMPDGGVVTPLKAGETVGNLSAKGTLFNPPDDLHMRGDHNETLKYHSVTAVVIAGLQHEEIIGTAQDESCGYSAEQNTHCVAIHAAHKGDHDSSIALETEKVAVLCGDTEEGGYIWKERRHLSDSLLARIKAMFDVRFYDSHYGDKPGMSWPALRPWMKRGDLRGAWPVFLGAGGFAFNLGSMLGDGYTWNIYAILPALNGLQRLLFALGRPIRAVKYVKDTFDGTATTSFLLFYPAPSVFFLIAFFFGAISALAAGYMFLLEGRASLPQAITASIVAVSVCWQYNALFVGLMLVGEFCPRFAGTPAGVMAILGQMHDVLPHLLMVNEAVLAFIKTILYLLSGSGEPPLEASQMEYSAIVGGLVRITPAKDLDDPADYAVTGYAMITLVGFAIVLAMQVHLDGMCGDFSGVRFANPLHVGVKVIFNVDPDILCGPDTVTVGTLLFWAGGRFVFFRAASRILLPVFLSPVYKRWGSRVSVVATAFLTCTIIVGVRIRYQNDEVYANGAIYSRSDCAPGMFEEDKRFRNLLPTLEYLNINCYFYKLKGHNQINVHTFNWASMVFALYKKKEFIKQALLGWLNGDKIDLERQKEKSPNSENHDSDDWRGDVTVSGFTRPNCGHQRTTTLLQKVRFRTRCMMSRLLHVPFRRVAVHFFSFVFIMRLFSK,17.9999
32
+ GRFRTYVKFYLRFGACHLPVTVFVFVNVAALVPFILIARLKFTSDPVHVTVEMFVEGMTFLTGSASIMLFGILMAFTDRRSELMSWWFESEGATSAGLYNEIGFWLFITIEFGTGLIGFGLRTVEIARALGFKPVINFMYFAPLMGLVSVLASIRLGMALSLALDMSPVVIVLTGLSGRDDGTNFAWLYGGIGGSGTYGTGLGDSPGGSSFLAVMFARGVAKLGSKVPEIAWAIIYALLPAVLGLGVNALPKYYLGELRVTGIRGIPFGDPAIVTRSLTKLLRQEAPVDLLVEPLLIRHAILVRSVRTMKIGELVQIRVDVPLESFEDSKIRSVDDPLLDGDDVISTTGQ,16.3933
33
+ GVSKWFDPSKVNEAYSLSLRGDKYETTKANKTELFGEISLRVKEYANLSSIYYSSTSGYKDGFKWSDNSSKNKKVKLFNHFNAGDYQAMWEASRYIHLNQAKDCTLSYSAWNGTDAVSVTQAAGDSSLTLYRTINSTNDTTYFLLGSMNGGFSHQEQTDCSTSIPNCSAQFPAANVPTQRATYCVVCSLHNDHCKSTDVSEGCAGKNLLKESCQASFTNYKN,20.0769
34
+ YLLWMHDKSAYMQKSRTPSVQWGYGVAAVEKLAQWWASAKGRGGWFVDPPSPKVQAIPNGCLRNIASGFWKPPVNYSHETSKWKFIYVTLAFENLYSAFWRFFPGFMGFLSPEWNRKANKWNVVGKYDYLAAFVLKFGASYTDQTHIITWARGVRDRISNISLTVYVGANKLGNVLLSLGGGLSFLRGEFQPYNHYRAKFQAVALYDWRMSMTYSAKYLQVLSGQSGLKETVMTSGFHFFRLTAPASVFRTSQRTEVYTLFLGGLGEAQKDKEVYYITLPTLGITYYSATLTGSFDFSFHVGLKEDWRSIRRGHITLHFGAGSHDGKLTLRNVVDITRGIPLKYVDFRGLEFKWRDKAFYIHAKPDPQAFWVGIAPSDGVKSKIGPLPTITRLTPQLLVAIDINYPMFPKDGVDGYGAVEGESRSYYVHVFTAFDMQSLFNGQVHANYQKNKPKKDVIVTAATTPSSEELIKQLTQKCGKRATFMSIDMQDK,18.4373
35
+ MNPLPYKVRFLEWTNDSAPDTCSEAATAEPALRCSNIVGVKNPREFDTLWEKRKTRLESGTLTTKLESPSRMAILKRSIFRIFINFVVALGALVLLVISVSLNVRNNLLDPAYRIGVSQNKIARIGIDLFNGPKLQVAEFKICLGQTVFHLNVLHTILGLLVFYFTLGGADEDSARYDHDQYLPFSFVTNYTFHFEVAHYAMEQFGVGALANLLFLILVAHTIFVVSEEIRRGMANRVNLKKTSKLNPSGPARIIEEFQYCAYFVNQVLKIGKWAEPAAAQFIGRHDMIARELGQKLFDDNPSQSEVNEGVTAARVKVINGCSKEPCGKPPVMAQDLASKILDQFGTYSDTPIIGRINTIMLNGNTENGQTVIDGWLHHLQQRLEVHHIPLAESYDNFIFGLDNTETTLFHPFWTDMEEGEYGNPNYITSGERLINYRRALHNTWGSVFLPLYVFFWNWSILRPPPDAETLLKYQISMPSSIRATAVIHYHIHWLTDEEKHYVQGKITQCQGATIICESTATEDLIEFVTLDPAWSHLTGGRN,18.4536
36
+ MRRANLTRADSIADGEVDSLVRASPSLPRTEDDAVYLDGFERRAPDFEAIAQLSKMRYAGMSGLMDELKKLHDATDLNELISMGEMALVESENRTNAIVRQGLSEVLAAEDLSICDIQIAGESGSVGFGRGLRNLTNYVIDVEVRPNGHLIIQAQCFHTEDKSYEKADSKPLDSVQYDDRKVGYQGDSVNAGIPEVAAAGAGRKVLYAEIAVGGDRGDTGWKLAPIGSVLGGGDGAGIRGWATAAAQIYNWTRLAEGIASIDRGLAINGGARLDGTQYALGVGDANQASPVLFTGGLTGAGPAHVRQFERLVPDHPLSKTLVVLSSINGTVLADNSAVGHVVARGNTGLEILTADTAKVANGYTLPVRGEFDVSSAGNITAVTAIAGPGEDISRQAP,17.1274
37
+ GSTKDQKQTFTSFVGWIIFCSVATLSSFVYQQVLLKGLSQVLDYLAVTGSFGGIGSILCFFISTIGSGSGTVRTNNLYQHAASIFWTIIGFFGIAEAAGLVASLVFYFFQ,15.303
38
+ SGLPAFLAGIYPVIGGSLAVSIAKIGPTVPILQAGQAACHSKLLPSNEKPVTIPVILSLAYGVLGWTLGGLGEDLLGELGQVIGIGGPKL,14.4576
39
+ RTSQIFEAFLLRTKALKWCWIVLHLVTLLLLTSLACAYYQVESAHSQQPVLDCAYHYKRLGDGWWVGYSQGVIGFGVTAFILLISHQEASGVQDETGKFARYWKLNCTIFLTFLVTWIGLHFMIEGIDTFIGYILMVAVASALLGQVLISINEVAKTTLLGNNLDGITLSYGASPEPVSKNLEGDPAVYAQIANSGISIRLWWIIWALFAALGILLFVMLTDRHPTPQPFVEAGYLEKGIMTVLLLALSNYPILPAVFLIVLTSADIRTHRNKVVYSCNDSKFISKLSAYFEQTNKEVTVMMETAEPIVHVGNYSSPVGAIITISAIIVSTLGSLGKRKSAFPVTLTFVVVLITVIAIANNVISPSDQPVGDNSFFLFEITIALGVDFSSFILAICSFLKLELNTIFGSFPKCCYFLLSFVIMLFSSETFIAEPLFSQILLALISVITLPETTSYFGQKAVSFIKFPCIKDGFSILPTLLAVLELFGIVRNLRLLRLLRSFRAFRIVSEAKVFCITKTVLAHFYGPLRHRLLMHTVKGRKEKLMQALMCLGILAFLVSAIVEAIVLLFASYYLSTCYLLPAFSFSTVTLSLLHVYLSYIHVNTILVALVVSIFVIGILMSLILRIHKNMKAQANN,16.9812
40
+ VGSETIGAPIENLPDPLQAPAITAKIPTGATVQYLAQEPGIVGVWLQPRMVAFKVNRAIGSISFLIFFFLTTFAWLYITPGQINVVGTCVGVSVGGVLIGWGILIPGDPAKASFKADKYRWVESLALKFGETAARACYGYLFLSVAAGLEYLNLFIF,16.1419
41
+ MNAMHLVRLNSAGRGSSVAILNDNLATGAAGVSSHMSEDDRIDVIVDFSRGGGGMQQEALAQYLTARLSSDGFLLADINKPNVNIQSVATSSQFEVQPRIQSNMDVLVINWLIQGKDSDFSTLIIQRGKTPYINSAHREKILLSLNSINVADKDIELDFDGYQTGPTQQLPPNVFAASIGTSLAIFFAKGEIPLRYMINSETNGIKLLQYISQSSPADMEREVVLVNHEKEIQQSLNTEKLADSELFLEGWSEKIDNSVYVANLFEDCFHRAVVGCVATARLDDMMGTVEFAAWLNVDSQGKLLISEIYTSFTPELVAGQAVVGGKFSTVDISTGEYEIFEKRAAFGINTQTASALIYLPMPRALAPRVEFWQLIEKLMKASNQSVMISAGVAGTFSGGRGLLYVNGLNAQLVGMLDALLKLQKIFAANLGANPNLSNVLIIGDTDSVLALSQGIKLPNGMSLELKEVNKLNNTFLDELSEIIGDFSGSSEVRSKIWTSTQEVKLGDLTEPLFVGVSSDIVALVANGNIELIIANAGVSPRANLDTAQVFQRGKQVIKSRTGPSLNAKGLYLVLSDQESIRSCQLTGAQNLLAMNIQINLKVVVRDVLSAAAMAFLAKECAIVDIGGCEVSAPAYPEVVTLRYDTQTSRSFGQRIIQKQTLGNAAVNCSVSDAGQSAPGSSGHAKGNNTAYISVIAARVGGGIGDLAIVLAGLIAGATAATAPNLAYKWKGNIAPQAKDVLSSVKNGDRSLNTRDLSVEPVKNELAGTTTLNWHTTFAMNSDSGWRNVHPYPSNGNFP,17.5854
42
+ AKAPGLVGLGIGSVSGLVVGLALSFLLGCVCTDHRWAKYDGAGLAILEGMALNDALLWVYPLQWTLIGGVSLDSSSVSLVLVIVACTAALAGVGRVLRAILRFFAPRTRSQRLLLALVLSEVAVQLVVFFAQPLATALPLITAFTDHTLQVCYGGYTTLSPMDTLGQWVTYVKANSTGGTSLRDPYRALSILLVSFGLVTVAVGVTLKRFTASAGDCQ,15.0093
43
+ ALAQCVLLALASGVSAVLAIIPRKETYIRAKIVSIKKAKYGLSMYERGGRLKGLGIPPWSKAPRSNHHLGVYADEIGILGTIFGYTVPMGALVIAILITFAHLMPSYIKKYVYLTQVEIENYSPVPHQVPAE,16.8979
44
+ KECARRIKGCLNFTGSASWLSFVNLFVKQIYTGYVFAHASLMTLLVWQAAMHHIVNMNLCDEYHWTFTTATSGPLGYRNFTTLAWIDSMANFVALHRHFLVYGGLYHVASASLFTAFVAHFIRRRSPPTSFWAYLNFEQKKFLSAYSHGHHLILGSFLAFLTHLDYFFDKFSVHTNAFSQSWVFRGELTPELAVNLGLMFHVKHFSLFHFSNSVLILALHFSHSGAFIDEMRSLTALESAYGTMRWVREGMGWHRGVVERWYHGSFQVKHTEEGSMQFAKNFLLYLPELPRAECYAAFYLRTDFKGNLALRRHAEYRRKFYMMEGKTLFWRATQKGLECQKTWGAGFARTAALTSSTHAVAHVANVTTGFVLGFFFVWRQVHK,18.4019
45
+ FIATDRKWIPLWILNMMYTLSGMGGVVAFSAFLAITRMGYDIKWTGALFVAGSVIEYVEKLFPQAGPAGTLVVLLIPAAATGHGMLPMICVVCCMRIGFIGWGAKILILPLLGNGKLLAIYGIRSPWGVAFTVPAVLILVAAGLVFEHTWKLVVHAYDIGFLLTALAVALLALSKLLWYKEPILYALLAFSVTALVGFIASAAGSFFVGRGCTTCQHPPSTIFSDNGRGKSVWTFFLAIGVTIQLLALFAFLPKVGTHQTVKDLFNIIGTGDITIMLEQAAKAKRRGVYVLNLFNDKCPKSPAVLDRTVSYLPPNVSCAVKATKDTNMPLVTLTDDMHFHLEDYGHRALQEFPTLPFNHTKCYLSQADLYLTGTDMSGIILVSLNNWMGEIGHLAAHTLECPDERAVFSLPIGDDTFKYLLYHEQTLKGIRLFSHLLSQSSRQVTEGAGGRDILMTHQTALITLRSLIAAEVFVMTNGTLKLIPIGRTDVLWEYRATAYHDCTMVGIPSTNHLTWDGQVVESEPLWPLSGYMSLKTGSVILVMIDTVGRTTYMLQNCIIYLGLLTVRLPASVATMEDRDCVLMGYLAFLVKTLLTEKGYCFLRRACELIAIGVFAAWFMSIKYIAVGAFTGGILPWVLSYAVLGMMFIGILYCLIMFRMGQMVERGIVVYGRSDDVSMQNRLPDVADPMPATSLVLSHEMFSGCLPNDVHFEIREPVGVPMIRFFDWYGERVLPCQQPFKEVSKLIALVLQQLAHMHEKNLDPPIWNVLRIHVTPARPFRGLGAMGVNVIISYMILILVKFLGITISEKWL,17.7597
46
+ LFKSSKINSRNPISMLNIKMNLGSRYQVLAQIQLSPNKINSDDDTISFCINTENLLSWFLPGDHFNFADLRVMWALLIVTIICGGILFATLSMLYGIAPTRSTTKMIKINDQPAFKLGLIRTHVTFSSAGILLVGVSYNLSEELVKVPYIRGGNLYFQFSTPFALEFTSICFHNSYEPLYNWLAGYDPYTGTEVFFNFGPFLAAWGAGVAGTIALVAHACVAVELFKQLKFKIKISKICSTRIILPVALTGALIAWIVPLISSPDILKTTGKNIHDGDTLIMIPVLLKRIFAQMGKPESHSIEHALAHNHAAPSEAQFRLAIDDSYYNQAISTCTSRELKPLLNRNVVRLLCADGKKTIRDPKRILESYCEAINRVFGGTFKDFLFGVVENSKLTKFFKYFLGVLDIADLSNYSNGALTTEADQFLVEFLDIYPEYHKFSQNKTYIRK,17.6359
47
+ FWNWRRRFLGFLIGVVVTLFFVEATGTFVDNWSTIRAMHKMTGMTFGDWLGTIEALLTFGFLIAHLTGGGTPFGWVDDVFVVVTIALFARQRIFRLALVGLRGFRLERAGSTLKAVGALRPLSSTRKLAAWLMGWLSMLAFFGLVTGVLVYVDVRGNWFETAPYTFETVTVVYNFYQEHGYGDDALRYGLALSVLAVSPFIIGILGISFNWLVVPLSGWDYD,15.5532
48
+ TLLICYGASASNYSDSTRANAYLNMPITLSDVVVGLIYAISLGSVFQVDAILLAVILGNIVLGAVAFVVASAVATALERLVGRVSLIPAFETAVSGSISGDLSSYPDLYKRTAQSVIAMAIVGEVEEQVRGAENAGEGILDVLDWQEGGGEARTTLNQIGDGVLQGVNIGEEELRSLKPLEVGNLDVASDVTDYDKAVKIDIQFALRRARAGGDVVLLDARNKSSIDFGTDIIVGTAGFGPVGTAPFIELAAKAGFNVMVRGGIEDGIALTDIEVVKHARIKGVAISGGTTASIGSAARRIGRARISVSVGKARFQSLKKVCDVAALDIQETFAVEQILLLATGGKQIRSVSSAIGKPYIQGPDGSLGDLLASIENTVTVVSVKQNKAAIINDLGPSDLASIEDRTPEEFLETTEDDVAEQNDCVLMNALGLNIVFEDNVVLIMDIELGEFIPAGREVQLLNSRLEKKQSKLRIAEVLLTLSSRALPGITRGNYDIEYHDLAAFALGFQPVFIGSAAREGTTREALIAAIILLLESLILAGMAILAVGVRKLVGFQVQPFSGLFRAIFSVVIGTAIVGLGLAWAYGPLHRLGEEEEVAQTKVGWGGSFALIISIVNAVLYLTAAIFLIILLVALALFFVVETIDHIFTFEIENTVSAVDTFLAGFGCMTPQLQKFNRQLHKIPNFFHTLDEFKGLMAHQDIIADFNRSIASLFLDYINAVMIFLDGEIATKILRALDAILGGVVFSAIIIGAQASVADSIITGRDITLELAVALLLGAGLAASVLALGVGVTIAGVGGAEKTASNEGQARNCRILFYFCVGCTSVIVTGVAVAKSIEIL,16.4406
49
+ TLTFMMEGTQAWIPWYIIMMVYHLLTQTYNMAGLLLFGLLFAGIIGLLASRPRLFDLEQRERINWTMQPLPRALTLVIYMLLPFSSLVVIFAIAEATTYSPPKQDEHPHRLTTAINVVVAPPYNFDAGVSWIPLALLGLAVALLQKVQLTPTNRYNRLFKLVQFSQININLYSGKAPITIAMDSKDTYPIDETMRTFAVLRETSKKDTVYIPVEVENCLKGTESLYPAADTSVNLYLVHGGQNHFATKATMHSIFIVPVGIVGPFLAVVHLIILGIAEAGKREEYYLLYLFGYLSVLTLKLNGTAIIDALIRDGIHCARLPGRYNVLNYVVPKVSAEMKIIQDTLIYWEPAATQWETKLFDKSRILRNSPGYKFAKLLSVHLITMAAYCTLILVLPTVLSEYGQRNSGPEKRVLFSCRLLKSRVKGKSRICFHQVPGRKMTDTAKKLTSGVKNIFRNPGYKYMESNEILLIYTINLDYKNNALYENGPAIQTAAVINNNHAGTLFLQDIDVIPNLMALSPFVFLVCGYAPEDTELVFCWVLNKCGGKEVYIAFSINRNQIEDPLSKLEVIANNIIRVIKDDYNHRKAAAKEYAEWIAVAEASIGTLPLSIAKGFFASEETPKELRMSFILRAMKQWLVVRRKHKHDCKNMDFKQRCKSVATIKRKPMEQSLCVPIEKHQPAMRKYLIITLLEQNLDRWAHEAERVTSHFLPFFNNNSETNCHICECLNEYYQDAELLLQNAKISSGCNEYGAIYYSGIPISGAVAQKMTNIFISGSSVVLLITSYGGDE,18.2811
50
+ VAQMEFPEGTTSSCIWKQGYHNPAVVIQQLTLHRCSASSDTICTLMTSQSNSTQLMDDLLASVLKILVGLISSDYTLIDVGGFTVDVDSLSLVYRNFHTNISPCNIDTVTKTPDDTLTFEQYRDDMRAQVEQTYKAYVSADPPETRSVKASSYTHVYRPIGMPHNIIQPIMMIVEDTPQTESGTGIKMCSNQRQDVVTGNPVEAFQTLAQGDHYKLMDSSTNKSILAVSNGWNLCLGSFDSLENNPTITDKEGEKHYKFMKNADDTLNSYLYLNAVYINDPTLPVTILSSNAGCKGLLEAIYKNNIRILYDSYPAPNAEASGNNVKSIGTITVASCMGKGSMCPCGDDYQTLAVAVSLVNYEYWDLNGSKSNNNVIRTSGTFSIAILTDRGNYTANRSALLKAYINLLENYAEERKKQIKATIWLYQRDGRSSGKKEMSCNDDPSDTGYVAAEYPGAAQVLDTDDLETMPGSILPSFQNFAQVKLFKQQYKGKVPVKWMHGYVRHNLKANYFANGYYFAPSEGSIINPVLGGATE,18.9275
51
+ TGPYKKLADWNERVPTPSITQYIASHYNYPDLVAVRRVLRVPVAVDATGKEVTVDKQDCFFKSDGVVYTTNYKSYPKTIISESYFAYAIPGDVQQKMHTIPLTSNVYKDDREFFQYKVSFQFTPPTPPDIQYPARADNDSEGVLDWTKEVPWYAKDCNGPLAKCYARVNTDEFYESSAARLHPWDFPWASRLHIPAGIYYR,19.3561
52
+ SRKILPIVGLIIGIFSVIAMIFYVLLKDKNHATNIETTPADVETIWNMTGLLSQSIEKAYTNPTREYITHADVLEQLKKTFNFDSEILNKAMNTVTQYMSENQGDAAVKLTEDFFQTCAIETQTRNPGQFASSYGPDHKLAKDQATDETIGEDNKSPFNDPTVFGIMKALLASMTNIIKIAMETLNLFTIESNVIQLLPLVHAMNPRSIEELRLTLSYFHKNLNVTLEEDRQKLASILEILRHLLQLFFLYLFSVQDTLQNWLLNIHFNPPLETIVPTIPPNDNEIAQMLIQLNTDSSSHLITILDKASPKMHMIVLGEQILNQSLKDFTDGLHSVKDWAEPTDVLTRLGISPIDNPMSELSKLWQNVLLYIKHQFTSISNSSTLIGQLKTLAHVRYQLLEIKPALQSLASYYLNIDTTMIMSYNLYAFDELAIKENLEEEEIHSKIPEEQDYLDIIAQDDLDLYLKNLIEYNGSIDQQARNRIGFSVISFVHNKLFEILPWLFGKDQRTIKIGLVIKNIKGYIPGLLAGKMEQIRNLSTDENLQLNDKLVVFSGMKQTNGFAKLTLLNMSPLISYYFSSKAAGLTWTSDFIPVLKISQLIALLQVYFLVMKSKTITGKYMLRYTDTAVKKNHVFSFHEVAGHFEGQYSSPLNAFFNHISRNTIPGNRKIIQTYPLLFGSLLAVIILLLILKLSLYPVKLNLATLFALNIVLVTAFLVKTGKDRLKATALLLLGLAYAADLLLGFKSFGGQGESSSREHKLANLIIFPLLMIKTIFVIVSIFALYYIG,17.5915
53
+ TPDSEYMSQTQNRYSENTCNHQYPTEWSEVIDHTSVGILVVSINRFWHQDKCHQKASFLREGAFFRAGILLGALSVLLCFSKWSVPPIPLTLLINVYVSEQWIFLGLFVGDNNEIANHYQIEVLLDFARPYKRYAYEILILFSTHVIIAVVFRNLVVYSPDSLLISISQTDRLQHGFCNLSAVLETVGILDIIVSLFLYSLAETSVALIIGLVVIGSAFAVHQAWAGMWIPGRNTSRVLREVKWFVIIFVAGRCTLWFYLFSCSQNNLIRQTSMHVFVTGLQICHLFQASAPHLVSYLVHLVVRFTQISSVLRRNNVYYFLGAPFTSSSSLIGGIAICVFPDYSGFEKLIFLSENAILMIASNLLLRDGPRRAFLVAREHQEVTLNWLSRSLIWRKEVDIVLMGLLMLLLIVATGNIFTIGEIARVVSSSITLNSVLSLIYWFIFNGEHVKPFTWVSLREMVNLQLNLSVMRSKRGATNRLQKMNAIQEIMAVDLSGGQRRAVLIARELAIAPRLVILDEHTATIDTVETSVLALLSPLLRKGTTAIVILAMHGRDLLHQLIGLIYLNMRVLDYLRHKKWNDMKLFKAMAELLKKYMTEPGFLRWMDRLLLYQLRNQTVEDLKFTFVAQQPA,17.687
54
+ PRSRLRLFMLRLTGMSAKGASPTMLLGLGLLLPPVTLFYGGGVAEHGLPDPYALGNVTIVFATPSVLQHGVHWPIPELGIMALLSFIPIFAPEWRAPTMMAYGLLTGFLLGAIYGPPVVVLPLLWGKIKMWWKLAQALLGASQLYFTIQTAIPLLVTTESETYNPDSRFVMQLLWSHIHTFIPILFIIKAFTIGLQPLQMQHQPGIWALFALTMFLVSWTLARDPYITPDGYFADQKAMGDLLTFNLLQRIPVGNHPALSPPGPYSLLGHISTQIIVAPFIWYWRSA,17.041
55
+ NGYVEQISYHETITSDKLRIDCLLDLNLRFLAMVLKLDIKPLKGELFAAFDCAKMWNCPVERSKDGEPVNQDFVAEAQLRGKVFSCVIIEESQSEYIPCSAPSTVSLEICDNLGKMMPVLRATFQLQLNLGTIMKSTVKESDCRLPAYHLKLECPNENELVGVPQPGPVRKAIDPISLFEELAAHIKFDKNGERKFVQILSYSKKPIKYSVKFDFCNSAREERLEVASYKLEIVSLQEMRKDSTKERSLRTMILLQSSTISFQRLDMYLYKILYLCFLDTKYADVMFRFGVLADISRLCSMMPELKGTWCTGTFVWFIKWAFKVPTLNLGGQDEQMSQFLRYMFKAKKMVIHDPPDWKMACKDSFMPKRNVRLTLCNQKETSTRQALIETKLLEEICTDVDVVMRGEENTVEKSNLFWLVGDSKTVPRNDRLLVGLGQTRNLNASKFEVSHVNIPPGATAVETHPTRIVKLPQIQGALLFYLLYNCWALTPWFRLSKLETVTAITFFSRALYAKLYVTNAHCAQDMLKMCTAVRQLFSGSNFGYLMFHKLITTKQTMKKHFNVQQILSIAVTNVALVVTVGQTECVRPSIFSYVQTVNQAKAIQGVLVSILSPDQAGLAILFIEEGLTRFVLVDYLKMLGKSRQSKPFTLIVGTKETLEEWALYLTGEYVPT,18.533
56
+ SGSFNLTNAIWVRKYKWYELAPLRYLGRCMVMDKSGNKHVILSQVGLLDSPGDELIQGANLPLRITIVDGDDNDFFDQFGEVFELMNLGERAEFNNFVQPADIATTISVQDFIRYSRYLGKGGTFVNEFRDRYLEDGRITEASVGGGFIANLLDVEDLSLVPEREMVFGEKERGFSEAFGSLNRLVENNFSQENGRAEYLAGSNGSSYTTGKIGYVTNWQSQFVITRDLVSMGDFTQKLFSYHQGNIGSYRPGFEKGARVKFGDPIQDWTNGSDPVTSDWSDNYGFKYFVDTPTSTLWRGVVVSNPAIFNMDEIGKNLKVTSLTSYYIKADGNIGRGTKVLAGNNYQVNFELIYFGTTWTLFDANLYYDNGDEWGLSDWTDVVYNSMVAAYQAVDDGHMTISVLGTIYVLMMLVSISFGTIYVYDLYTAMALAASGYLFTRRGLS,17.983
57
+ NDIRSTTEDVLMPVPKDLAGKFFIIEESVVIATETLQKDSMISFHEFGMGSADVYYTVASRPQYISDSTLSLNDTAISDDVTVIKSIGLTVILDLTAYDVSRVTMADRQSYEDREKVSYREIDLFTILVAEAFSCGILTPTYLAERLEQLGRIDIHDGGWNKTINAYELVISASTFADGKNFSTAVTIVPNLPAVGSEIGRIKANDGDIRDALGWVFGETTEQSISPVEYGMILITHGSPGGLLTAKPPLDNSVQEKLFQVLASGWKRGLYLQGGTLVSRAAYLGLDHWLKLPRGLSIIDVSMIDNSSLGIPLYIRYQVSVDQTDKIYEGGKPIPERMDQNRRSFFGTLNLPLAITQAKNITNKSAHNIGQEWWLKIFFTLIRVTVCMCILGFPHTGIEASFMFYLCSQYYSHWFVKWGLEVLSWENVMSVAGMNKKPGFEFALFSDGVILGVVLFTAYIVILFVIMLKRPLMLPIKRMKFIGALLVWSLSVVVGFLQGSPRDKKKFLIKSAIWAVFFSLVAFPNVFLWFFTWKIARLSANASVFYSGTTTMFLSLLVTTATEFSVVQYTVFLEFFIMLTSGILVLVVWLISSQKTSSVSIT,17.4521
58
+ KARYVRLVVAVCLCPFVRYLEIQLQDELEAEAAKKMQLVGREKFNAEKLTTEDLIAVDAVGRAMAEAQMDPATIQRKIPGEVPANLLEEQLKSFLLAQEAKLEARRRRKKLQASGSKSNRVMARERQYLKRCDCSIDEAKRNLLDTTVDALAARSTIREDILLADSKISQLADTSPGIEYPNAFPEQLPYLKEEYYFIRTSRFAFDERVHALQSNLSLLGFDDDLTDATKAYTEFGEAFGMCLEKLDISGILDFLKFIPASSKWNPI,17.6976
59
+ SLIGDLMSDFSGYAEIVTEEYMMKHWMPLGLIDSENTFKYSYQAKMGLAGIENTGIDTSYVRSPAAGKVPVLPARDAGQRLGFTQLLMDLYLNSPGILQTLVYSWMEVQASWMRETRFGSLSNEFETTEQYLPGFKKARAPLEAEQIPKNGGRVPGGDRIVGVFEDSPVSGRSPEEHFQSFSILYIKWNAFWFFSVQCILTLILIIGFLLTVDGLHPCMQPMRYLSLTEFLMEFEGWVVSRRVVYIRDYDFTLTFMEIGNVAGVRLESYHWFLFWTAGLILGSIFFETLRHYIGAMGVVFPTDPPPSEKSDTFSGVTFIAGFSGAMRVALVYTAPQCCRYGEIAADVGHILAGGGGGYDQSCDEYLVIYPLSGGGWALERARKRGVIVFPYNATPWAGILERFLPLVGTARYIAFLVWLISLAVIIYGVYAYALIARKNPKGLMNEKGIKTARLATGWSWFILIKGLINMLPLRGVGTKVFLSQIVRWLPEYALGK,17.7286
60
+ LSFKIFIKLLIYLILIILFILSLFCKTTQTIGMPDLFVKKVDWIYTTYYTFYNDYWIVSVKGVSVEEAIRDLETSFELSKRNVMQLVDAVVWTEASDINPGTDFYHWQWKKLLEEDPLFAKTERLTLVTTFNCMFLAWFANVYALAITTMPTGLFIFVLRFFLLIYALFASISGSGYKDTWLVPFGGAPIRGNLAAPTGRKAFLDCLEYDIVVTNLGAATRATASVLITLFTILRLFTGKWNMIVDVTVRRVSMDCDEELAGATSTTSNMREIERATDVFASVCQLIRSFLDGRNYSQAVANMEYLLRMPESKIMLAWKWNEQAQYPVFRYFVLDAMNEMRVMNQQWMSELDGLFVQGPLRNVFDYLQEQVQQLRVAKQNSFMRFKTKFARGKELWNVWLSKSNNLCQCSDEGLTTLEVAAILLAVCWMVYGFTGTIRIITEDATPKSFTGHLYYQRLHYLRPMMQKIDNNPLVSLLPPRIILDDSTNWKNLVPELINVYIEPLTIPASQQVYELLVVLHHISPSFSGWRRETMVRPNFATDDVGWMKMEVSFINYDQVFYLTEMYPFSQAPFFKLLSQLRIMSQANFRVTIADLSNEIFNYQSLDFEAMKALDHLYQDLGPIDFLFVNTVLVRILNVLRYIRFLRVSRFILPYLRKIARGVFNIFDWYNIVRILFYAFGVSNLLSTIMCSSEPNEDTCDIMQPLDMYLTIFVLDLMLFLSYPQYGFIKALHGFLYHLNTLGTTMFGLAKNNLIYFTLVFSILLILFLGKILAFYAKRNNLEELIR,18.0488
61
+ ASIHFVVASLVATGLVIGTLIGNLIHSAGVAPVIAIALLIIFFCYIFHVMTTSYMNSMSSQGPVDAWTCVGQAIAIGISGFIAAVEGLVATIFFAGLAGAIISPISIYLIATIAIPLTIGLVLASLLVIVLKHICKAALPSVSVVKGISLALTLLVASSLIWRAADSAKCSNCLTASSFVHATFDAISYGAMIEVMAAAASLGEGVIVTAFAVIIALVFVEGLAFALTNIFCGLFDG,15.3219
62
+ KWLKSKEATKRARDKVYVKIMNRETPMAIYTGHHTYWELATNPVVPDKRFVLGEVCENRDDLPYYHWIEHFRSAIDKGARSKEDEGKDRKTSGIYTFRPLTQYQREEDMPTARVQLVCKGVTVEGMSINEIYFHIIHFAADDLNDMAAEVDWGVTEVQLDALVDEPSECEIVTDKKSRPKHIVITTNDKDLPTVRALVDKICLAEVGDHEIQMTRCVTEEQESYIKYLSRHKSDAVLMAGGAISDIQNCSEGRFPITYTDVCLKDDSKWSSANIISHFRGFEEILAEYINEQRWLNGVALRRGFTVQGVSDENPILLITDIQLDDLELAFRQNSINQTSLVSIGSHVLRDIGYFSRGQWGHEGPNQYRTRRHASCWVLNVRHNAILPTEVVIEDGWIHSVFTLYPSAPPHPLGYVQAQWRGFNKENVKDIREAFLKVRDLEWKRHEEVGKLINDIFNTMGYAGNTFWEAHFKRPLFSGLGRIKEAIRRKLIFIRTVISFENLKALVIAAVVTAYLIMAFIILEGKAWGRFEDYGNTTSGWFNLTGHVPRYRYFINEFCLSWHKQTRCREGNFITQIEDKLQACLKFFGDIINSYKGSLFKHSVWGLCPDIICLDKGISRWNVDWSPERTKEICGINPEPRASKSTWRSIQSICDLFNLDGDEYGTYDIDMRVRLTHNSTTPCFPISIGLPCKFDSAGYWTLARIIFEKYSLAFLRRIQIFSPGVAEPLVMVTKGLNTAFAILTLGLAGGLITALYLTFGKPMEGWIESIRILVLVLSLFLVALVLSGVTHGVQYRTFKDDRIKISVRLWVFTRRIE,18.7487
63
+ QEETPSSDRFICKNIVVLSGVAAILIGLGNILICVTTKYVKVLRYPNLRSVLTVVALAGFVANGLLVFIATNGSPTIGVSWLSMAVEVGFAVGLLMCLATTNILADNQNGETGPSDNDFLGSTQAELVMKGNKVAWWPMGFFVVDVYYAKLFAGVNNRILMGKIKGNTWEKNSWNKPGQIMAQVFYIIMTIAIFLSPLLVLVPMHRFPLNVVATSVSVSVLLGAAFTGLPDVMNWCTASFGIRYLGFTSGLAVKIISLILRISGRLGSIQLNFAEKLGVLLVSIAAGLISGIVWIGGLLVQLFTFIVDSFLNTKAASDQPLDIIIMLWFGITWHVLVLASCTGIFYMYNIFILGQSKNYGSISAVSTGLITANQGVELKGYPLASCCVFQITNMKVHEDIKECWTLIENCKDERNVHDIFTITVMHGKKILLTGGNTYRGVEIRVNEAGQVVPNHELYVLAKEVVYSNPRTLTSVRVAKNVELCGLTVRVADKAAMNSMLDKQISNLVHLGMSLHKMEKNVVLSGGQRKRFAIARAMISNNFLVLLDEPTSALSTSGENALFTDLPVKENGTTLVVVSHRITLLKFGDVVIMLAHGEVRVHHLCIYTKLDEFSLKIATYFMRHIGYFLDIVWAFILACIFGLAIFNLSVFGYNPSASVKLVPVITLFITSFLVAINQFFGQSAKGKLAYMHHMVRRDLFGKCH,17.4792
64
+ WNRAAHFLCMMLTFGVTTVSITTRDTYYTGLTKAVKDMSYTNWLIVFQFKMDTPSRTPWWRFENRWLNVPVLASVIWRGIPELFYGSTLVDHFSGVWNIVHWKHRLPTFKRLRGINSDYKPPLRIIIFLSLTFIPDLPRVLIVLGNIPKVTVRFFMLVMTCQPQTDLKQQDGFGFWRYKKPTTANEHNWKELRAADRPLMTYPTTAPKHMHPFGSLLFYGLRVATDQARVYMNEHPTSRAFLNLILALLELIPDPSG,18.5118
65
+ KDFATYDPTALSPGANRRHDTWKPMGTATKVERLLRWGYLTFAMLTTLTHIVILVFVPFSWSVWGNMRYGVEPPEMKDQGVVKFFLLVFSFFLHTYVLFTALR,17.4756
66
+ AFVPITKFYNLRREGTIFKTPELRKMGIKVWLVDLAVVPVAKPGVRASARRIIAYILEFNKKASKLIIRVDASTGFFLTDNLIGFAFKQGIRKVRFITDAPKSGSIIQALFGQHDVVISGADIVGTEFEVGHELEELDIAIGIGAREATRVFAAISACVPSQKIIGGGGTVLEYCATTGSATKGIFLIRGWMEYVNLLPELVRLSAVFSMARLMSTSIHIRRGQGSTPSYAILVGCFVLWIGILAWLVGFFDLSEQEWLFTLPILQLGLAAFAGLGLAIIAKELANITTAFGVLAADLVGGAFCIGGFNAMVHKLPFLYNLTVGIIGLISLAGYIHIIIGGSWWPGPRDREGVLANFFWTPTSNENEDFDILPLEAEDEKTSIDNPSKGGEVNRINLFDDQVLVKQSMTPCGSNWPHLPFVFPDWIMNNLFKAIFWKIVEGSINGAAIIAEDAIARMKVHVKPISYVNESRRFLKLAAFMVHVILEIYVFFCITLEFEQNLFGKSNGAGVPKLLILLMIALFLLAAVGGDITTKWATDVVQQLALYLTPDLLPMWWFETALGDAFECERPGIGTSVQYEKTAFEDKGEPTFDDTLARLIPEVLNVVFPETSPNAVILHWVNFLTFMLALAQSGICVLTGSFFFNQARSLRLCQFQKVTLLATSQDQSADRIVAVLKKWPPEKSGRVAYVNRIFVQLLVDPNKMRVLSGLAFTASVEVLSSVHAKRGAFITKPFTVIFVLLLVLVPLVGGYAFRILQNNFHYLQLLCFIDRDPNLNY,17.2646
67
+ SVSDVDVVKDKGITHHNTIVAAQSKIEIRVMSVAPVTVNQKGTLILDFSNREPNEISVTDKSTAGNCIYAEKHYKKDCVLAEEGGKVRLAGVGKSSSQSVKSKAAIAVQPQAGFACGQNGAGAFQREDELWDELITRNKIAATVALLLGGVMGKTVEKVNSIILLREKESQYIKSIAVQIKGGDKYQICVALVLEQDVLFHGVDKQAPLRNLIIKMKVCNTREMIPKIYETCKDAGKTDVATEVAQSHVLREELVAYTEIIVGVYSPNLLEVVYKMIPDDSVKLELPFDVNGSKIMAVDGKRVLKEKFMFGWAIGNRFGCIMDGKHEKVEKDVVAATLMGIDEPGTNVSELLKYLSYPRAVAAENTLSVEDVNMTMISNHINLGDVSKFKRECLALMDYLRSISSLVTLYNSENVSWQAKTKTRTFGFSFNGNGFPSSLQLVKLVTIIVANYDVQYAWYTGAEESEVNSPERFGCCYKCVRKPIRAGCKTSKMSPTFIILPEKTWEIDDHNLEYRCMGKPALSITLKYDRDDDNSKEDNKLYALAVGLVDSAVTVHGWETFQVSCWIPIPDKKTVKMPGFSDLYLAVSLCFPMDEEKKLRLHAPTLPEIVFVTHASTYIGDEAELVLHILKRNGVCKSLGFEDNHEIWSFIAWISQYHSTNWRHSGSVVCGKIRQLLQDLIPSADQDTQVQAYCEECKNQENANIDDSTLMLVIAYKNLQYLRAGILPDYYTFDNIIQVGSNNVISGAAMHFLDQIEPFFVANTDPQKNIQLIRNKEDEFYWRFWAFDAYANEERTSNNRDIAKFEIATKTIPRLQYERKYSEALEVIKGFSIAYNEKY,18.7321
68
+ GENFEELFARVRRQHPEAFFLYLPVILIIGTGVAMELFPFAKKYWRFSSALGRAFLILLLSILVLKLLLGKLDEFRIESWALADFLHVVQAKTAPISPTIAVLRYFRVFRALRDNMLDRTHDLSKPVIGYLFMAGLPILLILSTAIELGVIQLDGLTILPLLTSAAFWGILPQRVTSGGDGSLLAVLTGFAPSLKEGFRYGFIIGLFMALLGFIYTIAAENDNEALRQG,15.1469
69
+ PYVRSGNVLMAMPQWLQDMKKTLSSKRSQKELVKDGDRIGQKLVKERKMSTVAMDLYWMSLMLAHPYAHPVLSGQATVYHAVGDGAVVKVHDGDTLFGVALYFSENMWFAFFNFAPGMQAPNVSSRDGSIGLWGHLLPAPNFSFAQLMMIWFVVIDFLAGLSRLLMLYYYNLAKTFRFHLLFASTVSFLEVQAVATSFWAYSGNSALLVMVSFLITYTGTTFLAGSMHATGFYVIHLTDILSQHVTFLMTLIEAMNSHQSATSMSGSRADGKTTVNIMLYSASLLNFTTFKGGFAKFMCYISALLWLVILLYAFVDGAACIGFGGRLRRFSHMAIVKDQSWKFYVTQKGPGIIQAAEYMMNGPNIAWSFVIHVTASHHRGDIIVSGGWIGSLLPMAMQFAGQWAPLIVRAPKNPRVLKLYLLVTMLPAGILIAITVYTLWQPVKKRPQRPSNESNMLIVIVGMALGAGTACLPFVLGEYNSNIVVAWAVSPVLVRNCFIIFMTVPQMACMQDTICSVDRGEHVTGLNSLTVVSVTVMSMPSYVIAVQTVSVSKSMLGIPFPFVELSLKADASLEQLAGPINIKDTVLKQCGAVVIILMLVFGILRLTFGGVGVVDLYSPKLLSIAEAKVVFLFMTITWGSGITNSTKVFD,17.7269
70
+ KWAQGYAVLEVVFTVPFVFILLFMFITTCILYDAKTDFVEFVLSIAFFLTNSGIEWKVCAVTASSDSQLLAVMCLVGLAYYKIYDYDCCDCPFSIDPKKREKTVNLKQCSQLIAFELPPKFVAREEVVVSQVPHRFKNSEIEDLTFELEGLIYDHNYPIEDGFEAWRVHFLVDVGGGEIGELAYPVYHAPVMSIGYISQRPIGIKAIVVRNQKDQMAELINEKDVLSISYSVGLSYELNEYQLTTIRNLRNSAAGLSGLKIAVDSIIGLCRTPGLFPFNLSHATSQAITVVLGKSKRFNLDLSKIKGVPALKSFARYAVKSVKRLIADADSLPPTLVAVFYKTGNVSTVKGLSPPLIKLNVLSDASVVPLGKKINGIGSTGAVCTIFNGVCWATTIVSQDDVPTVVVQITQFRLGSQLDRWGKRAQTSDDMFWDTAAGVRLIVQMGVGSPIATIIVAVRPADMYNNMVENSEEKLKLRNNRNRQADDEIYVAIRMTGGNARQVRLGLSEVQQKQRFVLDIPTAGLIFIGKEFTSVIAKVAGVYPTILLAERTPEDNSVSIYLRNVNYIKGRPTSFLGTGFNNSKGEFLDPFFTLDPGPQDAVNGLRIAKEPESHKILEEQHGPPCLTYNQHESMLQILKRARLSIAVPDNRVAD,17.9063
71
+ KSVVILVGCASSDPSDSIEFHFFGDNTAITKGRIGRRRFVVIGGPSADLDDEEGEYGATHVTVFDIAGSIMPIGFTRGMTRLYGISHLTEKPLPGGFVMVLPPGGWRELQNLQFYEAEKYIRLSESVMQDVNGGLTILEDLGDEIIKTSFPFGQPPDKG,17.3791
72
+ ESNISKIFKDPICAEFKKVLVSKIRPIKTTAVLAGLAGFFCGGGFFLGAITADVFMIGTIVMVYFAAVLKMSDARGYAWFFSFFSRFLIGATNFADFGELIRAFLKDVNLRKEKVHKGNYLALFGVFGITWIVLIMTSLLALGEFIFMVGDIFKQSGKKAKAKLNAEETIAIANPVIYALIMIISFLLSVATILTSSTGARAKRIQSKRRNLGVVLVGIFALIVVAILFILIVELCTSIGIQASYSLLAERLIGTSEYMEGIPNTNEYWNAQGVKQMLGVASLWHTKIYEWWNAIFGFFVIKLIKFISDQAFRDWKNGLHSLQIFVGLSVLSAGAGSISSILVLSDIIKNANTGSFIIVPVVFFIGLMINVAIFAIYYGD,16.4909
73
+ KTYSEDMTFLNTPIDRYDKPLIDRVPPEHHTYVRKIITVFLVSGILAVLLLMWATPQMHSKVRWLEAGNSPGVGRIKLDVRVPEIHPQTMHILNAILRFTKKQKDGPVLVEAKSDGDTIGTADEFAPLAAIARIEQDLKASLVVRQIVPHACSVPYPMWITEGDKAWDGVFYKVEECDTMDDFVRILNFMIGAEYLPGSNTTNEYCGASRKIVCFEPVMIRNGDDAEWKASVVVTMEILELVMQQVITCTDSAEDGFLISQKGQFVGEGELGILSVNLEKQLYKAVEIRSQDDRLKTLIMLIVSFIAVAVGAAMVSGYIPRRRYQVTVNKVPYRLQDDAPVEGDVFEHGLTEMRIPVLFSLVDKLECVAAIDRQFKLRRAERALVSFGTYLQQGKSLAQSWAPVFFGFAEYLKTIGVCIIDNVEGKYLKNTVAATMTLFLLFLCWLTMCFPLQHPPRLPLADFRYLRNLPGGSTTMLTVFIYAHGLDETLDTEKGFWFWSDTGLLGTNGNMSGCYFVSFAVETQAFVAMMLGRSHSLSHRFHGLLQYTTLGWAFFTSFIPFVRDRNFTERHYVIPQHTKASTITCQNKSVRTTDKPQARKYQEDLSHETTCHCQTVEKTFNHPRVKLTTVKACGEVWTECPVDIAYTLASELFYSFDLQGGTLLRPQFEHPWGRSNLFAAFFHMDEGFSCHLGRDPDMQEYINSSSYLLNSTNVSEVVLLEFCDNIPPNILLITATFFYGNMMGKDAIAIPYDEYVGKHAYELAPEAAVIVLIVFAVKFLLRPLLLKCLWAAEFADHALNRRSINTPTAFPVIHLFFDVSTVAAIIGKQKNYDRFFPQLAVDLEALVDEEGKEEISFLIREMQRFIDGVMVMLFMRKWRKRRTLAQLRPPAVSSPDAPRNCLNVPDREKACSLNNELKTNLAIAADY,18.5435
74
+ TDAIKVLVVVIVGIITYLLVMWYWSGVVFEYGPVFIFFLLITPFTGEEYNFVAIFDAIAK,13.894
75
+ LGRRRIYGGLFHVLFFFTAFIFLVQGLRDGGRLGVPPHTLVALFEVCVILVLSASYASTFYCDYLSTTVHIMHIIQQLLDCYYYHNTVLTDNNPWAIDPVTLSLDKTYEEEEDERVEDVTLNILKKQYWHQAFQFEKCRMNMRQEEEESWLLLGNPQKQCESCKVRVSDPIGPDSPRPDVTIRISSVDISRVLLILRGSESLACEDKVRFSLYRAYQEPSPLFAEEFTEDLRCIVHTVRVEENALDTLDASPELFYLPSCNAQLIACSSFLRLNFLLKWTERLALNDHFWANKGNLYHKSWQSVKEHEYVHFPYCLVRLGGQDLERVEAHEKKKPLNICLSITVPIYWGDPRRKEFCKICLETDYTGYDMFKKRRLAMIFFLMFLFFWVFSLYLVEHAGQAMKNKGKAVKLKEKLDRLLDCSEMKPKPIRDGNLKMLQMPGTFIDCSSDKGVLSEFVAGYLLIGVFFLGFLVYVSCSCTILLWLYWCIVIVWIIIMFYWWVSAVTVDLQMAKFARQRERKVVAQIELAWRLSLFWVLYPFLLLLFLLSYFGVSPLPKKVKGIGRAKDHPKLFYQLKILFNLTLLLFGSLGFNDSMKFPWDLVLFLFIEFVLMLYFFTVANSQGFSFLYRLTKPLRNVSALLIIHTFASFLSHVVKRIYESALFSMMLQTLVVSFFQQYVVIIYQVTATNFISRLIKTLKLNLPTFVITMVFAFLANFVCKLLMRVNNENYTFILMAVPLVVPSLFVPFTTLGLNSVAMGYFLRGFFCETLQEKAKQSVVKFKKDEPTSRYELTPTR,18.1273
76
+ SEKSISRALVTTMRYKVKFTHGQAVFERQYRHVLDGPFGERDVTGKLRLPPDPDRQLSLKNVYIVSAHFDPKGVEAKNDYVSVSDSIAKRAACVIADLRHQGCRIMYPGTAKGVEIMADSDGVHLQLLLQATKGPGGKKTAIADLRVPLIDYDPMATIIHAHVQGGPVFLREWTVIPVYVQLKFKNDNKVKINFIVPGDIQPPLIQDNDHWDTNRYKDDGQYKFDLLPEQIEIRGGYEDIVIDPGFTNSFGRVLTHCNSDAVERRTLPLPLWKGLYTRHKARSQDICEVPVLDQRVVLPSSRVRSIPELAIEDMWTPSLSDSVDKNVKHAGNKCNMTNMKREFTGIRPGDFKQALLGLTCHTGREMNINCLKSVLKGNKAKTMVFLHGPMTNTLGALEKLNKENPKRKYMVFKAFHIDADGLSISLMISSSGANLPYSTGLHLLNPDGQIVALNVIAPISIGGQSVEHLQENLLQKVLRNNKAKYSINTCVLSIDWMADLTSRPTKLLPRLYGSGYSISDIVTSPSDALFDIGAQEFVAAPLMQGPIDWLRAIAIDEAEHEGMTMSNVVAEAIENARREYTLGLSGVDTSGIAIGHARETVGREGTASMPTSSAAAAQGFWWATSILNLPPTMTALSDMIGGQVVNGGSIVVVGDGVSNIDEEQRIMAQQMVEQIIHLMSVNQVSALALKNLIEQENNTVGQDMLMRPDQTAVSLILKTSAISELCELTDYVYQHSVVQSQRILVGPSGTAIEQRTSKAALLDKQLTMPALYMEGDAG,18.4702
77
+ GPVSNYTYTRRDGLRAWFAQTEPRTIAKPDPADYLPTHLPAREKLATYKRVVIERITNSMGYIEYLDARTFNYISSPDANHIIIETVKMIACMLFAIGIIFSVHDQVTATQRTAVALLVAIEVLPNGVCPSGTNHPSVFQKILTGEGIFCADVASVGAARAVFITPQVQGGSLLATKVIMHEQPRPTEIVRDPILNQAGVHALCGTKVEGDVRQSANFTISFYSYSSTEGINYESTQSDIYHDKSPSNPITLLCVRYSANGKRDLEDGEVLSRPVTTQVTHESDGGTEKVRKDNITDIVIVLEKAFPAAIDEFRITTIKILIDHPITEYIVVCNDPNPVGTFRLAKYILNTYPDGSVVVRHENTFMKMLSSIFIHVNPDPSRLLNVIPVTNSLVKSGRYVMGDSDVVEKDNMKAVLKPLFEKVVGSWMGNSTFAMVAGFASLASFVFAFGHVSTQYAGGIHSEPLSILFGVNFSLSTTWVSAFYLLAIILMGILAGLETLLEGEQA,17.9375
78
+ IGFNTTTLCVCLMVALAITLTYFIKNKKSAYTIRLECTQASNCEVINFPRGMTTLNSLPSDDIQLFHTYSAVRLALCLGGSLILGAVLKIIFTNTELGRVLHAKMLKNGSLSALAIVTIFVVFFIAMSNLALIHAKGSNKAAASIPCGFLTYSVLALLGVFMSKCWNRQMPMLYGLSKGHC,17.0854
79
+ NGQVRERMVVLALKDPANSDRINDHSMHIESYTFVYYPAQGGCIHVGIIRLRKPQKLSLQEVLAANGDSVILAGLGVDACSFPDHIMENFFEWGDTQQKMDPRVGPNAFVYDQAFLDEIEGHDLFFLREILDSVTIGNRLQNPLQIFRPYAQARNKITRSHLGCSVTKMMLRNLETVCTASFQTREPELEPFLQEMRADNVSPVLDLLEEFSFKIPPGANIVWLAPVAWPILQMVKRQLRGTGRCPEVNHVSPGDVPKGATQGTWDALDAAQLFIGGDSNIRGSRFFFQLCGLVRLFRTARVASVFTKADPLSRTALPEQGAGMERLVADIFESVHENERVANLADLDRELCDYPARVQAEEWARACGRAKSHAAYLQSGTVDTNVKTHAAHYVLKKEELDFAMGFQGKTLALSGHRCLVRKRVASTKPEIFTQLEQLRVNNPGIARAEYTELFAQGSFVVVVALAEFRNAVRQVQDDSLCQELIEKAQMFPRVLQEVRKDPTPKRLSFTLTLIVVGLPRSDFALLNDAFLACFIPNPRGVANVILDTNAYDLEDLTSKPEVIEFEGICDLRGVAAVAPKTPIPAPRPMEGGKMFLISDMEEDGKGYDVPLPYALGAAVVVAACDQCGHPTFGTNGIAERIVIYVYLHFPAVVALFNPIGWACFIAHSCDPAFNSSFCRLGLPMLIMVVAAIVSGTLVFTLMIVTETECLDSGESKQKALAGDMLIAFPLMGLLELVLMELAILKGSAPSSSRHVHKDDGFVAMSPLNGLALFIVLLIGTFHGSTTVSGQVRSGRRTDMGLQGITGRAAGVRGHHFIMLSRADNIVTKLVPPWATALMLLLLPFLLIAEIEMGAGPLTLMDGVRSWISCLLVAIATAAFFFLIGTFQWVLGYWHRSNDSFISILTALYLLINIAKLGFGFYLH,17.9518
80
+ VPISYDIKVPTGWFIDGDKVRYKPCQGLKVITLVNDWWIILEVFACVTLPSTLILEKQDYFHKRRCTTIFESVAEFTQAYQVSIQESTQQHLTMAVQQVLGIRNRVDRKYVILVANDSPVVCYLEGSKVLFTLLQGPKPSSTVLLGRNGKTGLLLRDVTYMKTNGFDVVGGDLSVGVKNAVKAGFYPVPLTQIVQLSPVLTQAFFDDESVTVLDGPIGGHMSNKVNSQAQQNWKINNDNGFMVKREARYLGVTVIKNDLVRGFEDLTDVLGGCSKSILGALEMRDASELNHKGISVVAETISNAMTLGVSELTCCTKHRKEVWLQRRLRGKWLRLMLNIVFAWQNDLFFTITFVPNIVHFQRKIFMPAEAVFNFLIASLLFVLIGEFGFFDVEWRRWHWRRFNMIFYVERYFLFKAFLANEVKRGIEEAKKLLSLAFTFVLISALHLVNRIVNLLADCSHSRFLVDNLIDLRFIDIYCTKKYNHMTFMLLLLAATIITFLLIGINAAMVCCARNDQVLQLIQSLESLFNLIAHLNYMTVNKFTFGLMLRMNAYSLLIIVNSLTGYAELRIASAIMLRLEQAFYDLMSRFDVTLNGVIADRVGVASYSELAVAILQLLELLVMEIYEYSIILGLVAIYFMVTIGCCVKTLKFQGLDAFNP,17.7417
81
+ IFFLLSNSQDAYADKFKILVPLLWFLLSVGFAVLLHWKQSIMKAIMFNLSLVAFLCWLVWAVSNFLYKLSDIKMVFCLFIVVIWVTALWSLSTPISYRYTVKNFVVNERITGMFPNLILFAEIVPAITYIYFLFTFLDFTYRLQALNDVTVLGTKPMRLIQVLLHLRVAIGFLVVNLVGTFYDETMEGGEVWELFNSLTPDINSSVTVIIAVLFVFFNFFFVVLTPQHTKPCKKADNSSKPLAILVNGVTLILVLSLGYFFGSLGICAFSANSASMLQAFSMHTTIIMLFKIGVASAWGQVWNQRTDLEVTDHDPPLFILTLLLAGWVIESTTNFGGDSEIMNLLGFLAGVLTSIEIFGLQINLPTFGSFVQDWGAIATTGFQSQEQFFWITYGLIFVLPVAMLFFKIFHEIIEFNTMLIICTALNASFSLLHLSRALKFETKMVGKKRCSADEEFGARMEDAMDGAYAFFSKLLNTLFVAVFRVIVIYLVAFFIFKMLWIFIPTIVDKTNEWSVGGFVCELLFSIAGNLMGIILLAAPNFKMWFLLDVNTVFLFVGLLGLINEISGLRLWEMRFSNWFIKFHMWFFLPLILLLPSAIITFSGFIGAFRIEIVYVFSLIGLYSVPLILSALRQR,16.9356
82
+ AVITQRVIGIVAVTLLLLIALAGGILTPMGETGSFRFPEVSWSVLTLLKETGWGSAEDGPTLQLGRLVTRAIVVMVFAALIGGWIGAILAWLVGRRS,12.8882
83
+ FISRALFETAVILILVLSGILQGMVLHSSAPITDDMELHKLLAKEIYTAFCIVAAYLVVCVGYPLEREDRLMIGVYGSCSAGPLDNVKEWGYRTIAPLLVAYFGLFTLWYYRVFGEDAEKIWIQTAIFVAAVLGMSILNLLVYLGRFPDAKARLSILLKDLAPNVLFHFVFFLINAVALMPFIYALIESIIQGVGIKKFIIEQNGVNVPLTIARALKIRIIDGVQITTPNQNIRRVSPTVDDRMGPETSRFHNTLEQDDSIVFIFLFVQDLKILGLGSQYFTLFINVPAFYYVIDIINVGFTVVIIFVVIELIKGRFRSLVGLFWVGSSIKSSDFLAGIKNFVIFNIAEVPGVLITTIVEIAWGADFNSAKITIMDAVLIVFWFPILDFAWTNIAFATTGNFYFLIIVAGLGMKKADPMLLATLIYAVLSGACTPMLEVIMESVYVVGAVDAIALFIAPMFLRFNLPILVTYETRRPNLIWLMALIYFVDSYHLYFKSWWFFILSIWGGVIGMDVVGLVWILGNYSTVSIIGMG,16.8602
84
+ KATQSDKTFPLEVSFGFTASSGNIVDAHAASMATYITLQAVADLVDSPTECPISKDISTEQKIWDCLPTVNTFTARTGRQAEIKSTSLGQNLGLPYFDSSKSDKLHVDMNADGRTISDTLFLRDTQKQMHDSRKIFLPNTAAPNTGTKDLIDEYGEGLIVNHDTNDASGYLLTDELDCHRPTMKAGSLNPDYPSILRGLKVNIEDIIQDENKVSGFYQVLSYLLSKGSRLKRTIKFCHERDRYIHSDNHKFVFSGIGDQAKMEKELDVAKATGVTIGLEDSMVKKPSTKGNLVGIIPMNGTFLLVPQDPLSGQYGSIIFAHCIGKLDEDTAANIHTYYKAWVMMGNLSLYDKFMSAKSFSALKVQLRVLIARAGYIPVLQVQTNILDLSITEDANIFEEVLSSVSNPFFGAKKTIRQIDHDRNVGFSVNPRGIDSWRNDMPIVLADVAGSLTLTTLGLGFRAGLSDADLCYYHDLLLEGRVDNEKNAVPEAKARKVSQTRAGLFKRLLLQMNGTDFSIRGCQGQQLDLIASNGYQSLKNLQACKKNGSVTLSISVVMRMYRFVADFAKNNEALNINKYDFLKHTDVWYYPGEHNRDIGDLNLREIKFKPFFTCDNSPRNTVAVFKQLYTLPLDGRYFVSTKRETSKLITGEIYSISEFGEHKGWVALANENPGLVSTIRQTGRVVVQFMAGKSVKDAPISKRIMLVPCDKVIVMYKSLFYRLPEQIDTCYESEEFYDTKKDCIKTALLLARKIGYGMNALGHDERLSALQDVLRTLKPCDVLTLKLVTDLGQATGNMILLIISVHRSKLRKVISILGNCEAIARVLQTMKVGGVDAVILLGNNINDKDIEPTVYVGYSIMKEGINVPFTGGINNGAVLACMIKILEPIPIFVAPARPFRYYLRALLGFLDLGVGYLSNADEKATFASSYRPGMTAKELLAQLAGELNIPSDLPRTMEIVKDL,18.0526
85
+ RPKTAEAIGLLRATMLFALILAFIALAELLAGAMGLPGSWVGLPVPLIVLAILLVLIGFFLGLWAIGGFER,11.2268
86
+ AGVCRVPEHHEMPTIFCDRDGNNGPILADNAQVMAKLEERQQGRKIRAYSSSHFPTRSVFLRMGSGALAAIQANEGNVRLLEFDSSEPRAPLSKESDLFGYGGIGQPNSPVKNDYKQKIFGGMIITGPPSKVSLSLSGYAQAQPTTSLGTLYGDAAPAENSKVKSLLAEGNTRWRFVDNTDDATIMAYGMRSIRFERPFGMATLNAPVNTDLAPEGRAIIKCPTAFTFKFTGDDEYYTHSPPAYVGAIEDMKKEKYRPPVSLSGKRPLVIEDKRAGVMDIYSFTPKITVVPGGRNDVYYDIDIRISGGIEAVDRQPMFMFAVAIALCAALAVGFVMAAACELMGRSPRKAGTQYRKKRILVLTSNTLICYLLSPLLLEATLIDDSSCDCDLDLEGNRFDVTYGLVSCDDLQFQTLFSFFFFNLIASVIFVELRHARRIYIIEYPLFESPMSLVGCVFLALFAILLPDTVADGSGDQPMTFYTDIYYGLTSLGEMVTAYRLINLATGFLIGIIVELAATLFIMLAAEFFRSSQHNSADPRKFQREQRSFLRLRRELLPTTSGVVPTNW,17.8225
87
+ NGKNLAERFVWQQLSAAPFTMIFTMVQIGSPDVTEYGWNFDKRALAGVYISGQDVRLIGGARNKNVTVTIESVVIGGYGRPSSTDLAGHEVLAYFSQSPARSRFTNIYARLQNTRGGYTAKFTSSFRPEAQTYETGALSIRFQGTADAPSHLQERTIGQLESDGTLTGDEKSYRTGINRGLIGKWEDAMAHTLGAVGTSGSALVLISGNHFGNGYAFYGAGNKSLTSKLVYDNPFTQVNTQERFAKDRYPDLTGLELLPENVQVTAVGNTSDWLKGSIMFAAGALAGLGSGQIIAGFAAVRNAAEGLGVALLIAGGTVVGSKAN,17.1103
88
+ AGLFPNELNELRRRLASDATTFIAPINFKVMLTREFQLLHLVFGFAVGLAWNLLMGQNWPFFPLIHGSADDLPKLTSFGVIVHMHEAVEPIWAWYLSLISVQIHSGKFLQSIANTRLVGSLNGMFPAWQGGKMIGRLIPRHKIAATLAIPSLPVLWGVTHIDLMPESLEWSMNLVEGDIALFQETGTFVDIFLLAGGPRYLFQVTFDEKINRLMRKRPILIVSQKIGSHHFKDVEEYAIAMRQGIHLEEAEINIPGGKVTYTPNYLAPSYREGRNRTVGIWQTFLDEAWESEAELAILHKDLVISGEPVLYPHQFRQGGRELVGKFFRLVTVDPRAFVAMQNGAISKEELVAPLITARERTSWYIFGIGAVSATLVATGPVNLNCTQIAYGPSLSAGLAHGLIFLLIAFHLYHVLKCSQAFQGLAAIKALNLIKPTEQALPERIDLDPLVLFNVGHTLIVTLFLYLSILGRGDVGLNLTMAGVVGVMTVLTYAKFRHCPIQSQSNLNMDRADQYRVIDGLQYVLKEIEKDFETATGL,17.607
89
+ WAQKLIILMLSVILGGLFYFSLLPLLHPSTTLRNAPIIMPLLVLSSIIFYWFIHDNMIHHFDWNFKEFRLISQAISLNAFAFGLMLGTPDTLKPGCQHIRNPSFILYYLVYFTWYTGLLAKQQKELLKSLWSFLIIDSPFNLSVMRITRANLIENFSISQGNYLGQILLILLTHHSPLTILSWRGSPDRINDHASKNVPIKVDNETDNGELDKLACGALWSYYSQLWIETMLYRPTNGTEKNQYKDFINLVNLESYSTNVTSDVREGSPKAALLVNELHTYVILNASVVLFVTSRRDYNSLKKRNEA,17.6565
90
+ KGYDIRSNASWLVTRADGKRANAVAEPSALKPGPQSGVGNILPKSRASYFILNNIGAKIIYLLDILDTATVGALAKAPPANTNRDNQAKFKFTATATGGASFSGTVPTDIVGIKVGPTAPILWGQVVGGGQAAAGGTKGVTVEGGSGYFVAGFVLDDKENSLLPNSENVATIYIIPRGNIIVNNISEKTGPGVIIAAEGLAAKGGEMLVARGNSQSSTVVDVSKKAESKSIITEELLKTAQGNNFRADINQLVTSLVDSWDLGTEFTVGLNNATPAGGIFASGGTAVNGKQSNAAVAYGGVQIPQNGKAYGTMVIYKGSSQSKLDAVKVRFSTTNAPEYWFLVGAQDQLAGNNTGYFTGKNALAFAAALAQTEANKVVLAALTNKDNPVPQNKSGVVAKGIAEAFTEKFTVDAVGTDSIVANFNTKLAPGQIVFIGPDLEITIAYNGTVLSDAVGNNAGEAAILNPNISKRIQEKVEIGFSPKKNIGEEYISANGSIDSIGKCAADETAEFSALASTFTSVDFLVKSEYSSYSSNNTFDRFSLRDTSFTDDSNSKNSTRLKASDSSKFYDNYKMVKTAVFNGVATPAAAALGSLSQFTGTTTLRLEFDKGAASLKGEKFSDSKGNSVTEKKFQDTLRVNTLGRGVAFIGVKVDSPKALVIAVAGALGIGGNVLLKGGKIVASSKLKALSAKQARNQLPLFGEYNFLSGLFSNGATVAFIDPLGIPATKAIIYPGESIPIEVFTKTPTRVKFLEKGAKLGNTLSALFVFTETANLTSSLLVRANPGVAGNTKPKNLSDTSAGTSPQFAVTAISHRLALTA,16.9213
91
+ VLGVAEKKDNDDQAQSNSSDDIKKADRESTLYGQISAGVQVGAVGTAQQQVTFQLGYASLWGNSKWYHGLNKRDAVASGYESLMGSMTQAGNGISVRGQNSSSDHMSSLNNNSNNQYAGDNLLFSGGNVIQDMGMAQSLSYQGPFSGIQYSSQSYTNTNIFWWSGGDNASDIKAKLVYKAVGYDNYLGEVPGEATIQVRNLKFANNGTLAYAVHSQILLNGGKVAYNGRCMVSNNSTVYYSKTLQSALAQTWYEQGLVDANTLLVSAQGKKSDLYSLAKQNIAGNRRASFAYGASANPSAQVNASLSNTFTDTYTYFSGTPTYSRSSFP,18.6621
92
+ VGIIMPDSAAAFSVAGSLDPLQQVADAIEEFAEKKLSHFDIDDTSFINIVSYTKQVVRALFVQPCRQMIQPFRDPYSEIKFVNLDISKQLMPSPRRNSSVVKQQLIPFGKVWNILHKVGLNIIFKDVTVVSIALALAANLIKKSEFLSLKMAGRSVGTEEKLGFMGFIFMNTENYTKGNIPGKEIVAMYFLYLQNILFHPPEIGSPEPAKYSEQSGTYPCADAAKKYKKYPLQEKFMFIHASIGVGDVGKKVFSQRPEKGHLAEMLGAAVLFFGENFPQADFNYLPSKEAEYNLSLALFKFGTQFVVNNQPAFCYNEEGNGWLPVNKLESNEILDCDTPTKGTKVSGHLTPVTAGWLHLLQNLGMMCGSRQAQWQVYPFHNATCANLQHTKISPMAGLGEAISTGGRIRPTYRKILLGIPEDHYNPSSDLNMIESQLVQLDKLKEYEAYHFGPQMYAQNFPEKTQLTRLMQLSILLSDDRSLARLNNKSLQKMTESPEKNVTKSVPSTITFGYASELRRKKDRTKNTWVNLRRKENGAFDELFVSQESIHSNLSVAEFTIDFKRNDGVEIRACGVLCVTDAFRVKSQFKAIHVVGMSSTTLAKVNCQVLSPNNVTFDVNNPQYLHRQQSVLANASTWPQFRWQGEVSGPTLYQLDSIGVLPKADPQKPKWQAGIMFVLKLCLYLILFCYLPFIGVMYLKPAIFEQSTPPYKQAEAMHLLICCIVIMLFYSLSPVNLQASKQVEGSGVNLLVLFMTLLSYWSNLFRWFGHLFLMLTIASSLIYEAVAKLKTITPKNLKSIWHIETWQVFEPFMVFYIVVYSVALMSLKVFVDTWWVTFFYSGPVIITGSILGHGVNLLDRKMPYSSNIKLALHNVHQLLLNINVMVDEFTGQPTSPFVTNVAEPAKRAASLIIIAVGDALLAYMLGYTVPLVPRPK,18.4627
93
+ KILLGSSITQSWLTYIPFVFLLVIPLFMIRHYGILMTNVLTILILCVGAKVLANSKGDDPTSVRNLKDVWQKAFATALQITIKYYFGKSTKDFLQSVSMIKADSTIFVRKAPSWPFNLSVATVRGATTNGMSFTLPCTGEGNGGFCLLSQEAYAVTGPLLEDVGVLAPEGAGKLTQAPELVVGKVGDVDSKALLSLMIHLLAKIGVATVALSLIKGELEQLRVEGTDIARELATKDSKDDNKGSSLATIINPPMNIIVTVSATKPNNTVGGRASRALTQYLMDAGTKVVISTSTYRDLVPKARNDSSLVKTILAFKEDRVPLEGIISKRKDTVELRVVLIRLIDRGRIAEWLDKDVKAIDSSDDVTEDLIVDSKPMVHPMRVGGTIRSDYVRNQTIIHIYEKEWDDLSRVIEEKQEMKEVPFMWIQSGKNMEDEILP,17.3175
94
+ MFFYSLIRTAPGTLPLRQSLIIFVSGGGGDGSVAEAGTSLGAPAAEVFHVTIAARFSHELFATILLAYCVASGDTLSKVVSDRAHLVQLVTHHVGLARLRMLVTVIHFTALCPFGGAILFTAPLDINTRQPDPDPVALWWYYIAPVTGQMTREFGGTIINPNIANSYHLVYFKVLFRHFVAEYVGWLHGPGMHPTDVLDIKAALKKSPTHGPEIPHYYSPPRVPRAIPPIFSVFNEIGDARYTTIYDGSVMGLLEKARTYDMEEVYTPRQVGYIFVHSKGHNVFRLVAELESAIGDLFTAYFDSLTSEDGKQQNMISAYLKGLVASHGCGLASAFSFGEQEKWRNAFNYLLWGRYQIESWRTVEAIGPDLLSFWRKRFNELKQAGVWITTSPTCWEAGSVKDNGLFIINSMKYALGRDAVWSANMPRVNKHITIEVKGAAEHQQIVDALIALVKDYDNLGFYSAEERADHRFFVAMVKEKGSAGSSKIDTARVWDVHLIRSRYFYYDASAWYHSAQRMTDPIVNRGYNIGLFAAIVAAGMLLLVLRVDRRKITCPFRISCPDERFSLKSHEIPLDGNLRVYGELKSELDHEDPFGDLTVFRGTDTELSSGGFPLHWEFVKEPEIGMLETLIQAVVGVYFTTSLYPGYADEPGRTEMGLYNMGPFGWWLVKYSDR,18.1742
95
+ SNTARSTQMVGTGIDINSTQMYPYNIMLTGFEVLIRLTPSAIENWQIRGEEALDSFFTSLSNAIGNACVTVFLMRILLAVYTTKSSAESDRAIGYATAGLPNNITAIVAQINAVVATAVVNSMNACLDLAPILYWETLQKIDNISNYYPPFDRDCLKARAMTYQPQEVRMDMPITVACQSGRLMNTAVRKETVIYAIIKEEPKNNFYLLTDPVYQRADTVVQAQYGHEPEFDTEDNLYPNKYGWIQYHEEYYEPIWWRWKIRSYFRTTQLETKTSLLARDSWEPFYASPFSRHIPISITDRPGMDHFMDDLYQSTPSFLTNAICCHNTNGHFPTELLGTIDTLRSALGGLDLHQSSHKSHLLLLRSTIRDLCEASGSGMTTQFTYLLLGNVYIARSDNLKHAFDANAKKGFKLRVIKGAIPPHVKMQVVIGASAGRILLMKTSKLKFVFSDGNLQRPLSEYVELAGDDISEAVFHAGKDTFEFEYEVTDDQFFFHFRAELIEPWKRENLYDNSLYLFRIGDKKFVRTLFTTLSCNKSVMLYFQKFAKLKITASKKKGISFTPDRPACGISVVPHLDKQFVLQVVLQTLMKITWKPCKKNRFQSRFVDHGGFFDFVTYSEIYLKLFAGENVVFTRMSWYAKLSTPHDFQPRSLVGVSTMGIFDEADGKYHLIGTGNFGFKIWRFLYVLDSVFSIEGMFAATITEYILWSGIVRYFRTFFTLEAGIPSHSSGTEGVYVCFKELIFEWPKDTPSVQISLAESTDPSAGIWIREIENRNQFNKVSMLVKTAVDVAQLVFTLEAFAPFEQSLNVIFDNEVDVSLTKALGPTASNTYESSQLALGNRLVLSEAGDVTALDRMVTTITCNTLCFFRHYNGITVVNCIEKAAAVVCIHITNPMPGFVQTQLGIGGLGPYICKSCSLAELQCEDRKIRFYSQIPGSAGDFFEDIAWQKRLEELKNLPK,18.5522
96
+ LVKVETEVKVYVRPTKPLPYTVETAYGGSPEQQFYNIRKLEPGLFADMGGFFTPPMSTASLGSTYQIFRQIYDGTLLWKNNMSDTDPNNVYRALQMKDTVSSLMFVLVLPGSDVYIKLGLVHIEETTKIDGTPDDAQPSSTDLSPGRFVEEQEVMSEDDELALLEDLRSLKFVCQDVLKRQKRHIFNNASITESLTIAFALNNTDNRLSWLMYLWIFALFGLVLIILVLVAGFDIWWSPTKQYGMIIFNLIGNFSSYKTMSEASMKSGIANVGQAWTTIKTVTAVLNNKALVVVNAGEDALALLKSLPKQTDAMVGHIQMTDRAIGMKPNDLWTFIAPIGYVGKGTRMFIIFPKSILSPNPSIGRTVVVVAGIKDVLQDMIQISKTKTDKVSGVNKGDQVDFRYKVETSKNNSLVAGAITEALRGSSASGIKIGSFVQDPNPLFGDLENNFAYGASAMLFDAFLTRFNKENNLIVLVGNRSALNTDTRRLVQWVDALHFNTQLFIIAMEKNAQVQNALTTANKLGILKPTVNVVDQYFPQGLLISLDINRAIHASLKGLPPKGFVVTVIGEEPDSSQLVAKVKAFGLKLFVYAKSTSDVAKLNDLGFATLETGGSLEFFKMDQFKLEIANEVTKTMRSFALIVVLDDDMQQGTKILTDIHPHHPQFTPGPKEASLEKKLALVLGMAVVYRLRLTTVRLEVVTRIPAVIVVNDIQIFTDMAYTNVSGNLPRLPADKVKLGKYSYHAADADGINYKVTGDGSKLKGSIVAQIMVNDVVVLNTKWPIETSKWKIAVNAEVRLDIGPFSTNIPRTMTGYESYLGNRIVLIGRKNRVFGRSTIVEGLIGFLFDVFLHVWGYVFTWITLAIHYWAGPRITHILSRAGDILEIVMSAMRLEKFNSMTKDWLRLLEIPILAELAERIVEGDKRFGVIDKSGTPYELIKKTVEPENVPTALSKVESL,17.6058
97
+ EFRTALGTLAAFVAIFFISVQFLFRFYPETWLPIYHLAFKRLSVPPAAIVAIASVTIFCIGAIFGLFPGPALALRRLTGNVAFLIGIATAIGIGVTFLIKGISNSNNTSSMSIIIRTVAGAIAVVLLTLPALVVRIHGNFGRAAVGGGAAEGANAAIFQSLTGSNNAFRDALFNFGVKLLFGLAIETREIILLEYIYNLLLTVGYDLNFASRGRLQLNAITGLLVVSAAIVSGYRTVAAERKVFDFALLKARKSVYPALRELRLVPLITFIGVLFVTTK,15.2478
98
+ KGLQFTRKGWNHKGRRHWRDFDTVAGNALLGIEGQTGPRMVETGENVTTEPGNRRTRPTLLATGTEPADAGIEETRIEQDVILPLTTKANGGMIRVHHYDVRKIAGVEIDLESDILEARLTDGEDLHNCKFTTTVKAHIKTEPTPVSAADSEILLKGQYVSSDFEVLDSDLDANVSRDSRMWFEVAYICDILDKQTLLNEGMTFTVTSDGYSSGAADVWVLSTIKTQCRHAQGQQWLYRAGNLKPVVEMEIVYSAARDVTGGSLFGAVNSAAPFTVEMLFFPATIEQLRPGTPRAGKTITNPENATSGGNIEVFEEVKHFSDSQFRNEVRFITDDDSVYTATERRRIPNAPQNGIIRYWMKNGYASWNTEKVYARQPDGDITRQESFENAAQSMSTADNYYNHYYKEALRMHLAGGVEDDLEDDVTQEVRVSKDGEVEIDLDLNYTSKRYREGISWFLGCNAAHGIPINDAGVGFAFAAIPQYA,18.6838
99
+ FSSVATATTTAIAFAIAAGVGGAIGGAVVGSLVIASLRGTVTAASALKAPLVPLALTVGAASLGATIGLAASWGVNLTL,10.8479
100
+ SSITAAIQLYKPDSISILDDDSPDDLFETVEFLTEKQKNKQTSDNSYKLFADSFLSIVDSPNWTNMLLIAARVLLVLYTICPCCRADWVGAIGTDDVSYDIVCDLLGININFFKITKVLTAQYLPGRTKVGYMKHPLKTSYFVSIYVEDISDCARHPYGFSYAWQYVKKPYGTVSVDIYNGNPREKLFCLEGLNWATGLGLVVGAGAYKSLGTSVERVNTLVIFLETGELFVWAYAALWFRKRYTEDSEAKVNLYIAGLIVLFAVEKVSYAVPDIVFKEQILKSMVIFAKFSIINLYLDALFDFVFICIIILLLRVLSKDLEAVVGPTLSVFL,17.2645
101
+ LECYGQQSSLIEMYRDYTIKVRDRYANNERIILDHYLVLNGDFYVRLASNKIVLGPDDANSVVAILQIGDMGLFLANGKNVTEMKRMLEKLEILYFTGSEAAVGSVTGHVCLMITNIWKDNKKLVEMLEFLGTEIIYNSVGLVFMIGKMSDKQGVYAKNKFSDSILEIAVKLQNFTWRNHVLFIGAYLYQWELYAEPEVVINNNISVIRVLWDPDGKSLYIIRPEKPPNIFEYLMHGICTFGGVGAIAGGMGVPASHIGGLIYKADFSISSWCEPGSVNVGALPYGSNCVVVQEGGNVVTFSLPTGSDVPIFALEHFPEPGKWKWEGFYWINPTDYRIMISGLKYTLAANAIAGIGAYLESYNIKISTWQYLVNGNPYDSVGVYNQHEYPLYPSLPMSDFTIFPVLTFAP,18.4071
benchmarks/MLM/config.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PATH = "/workspace/sg666/MDpLM"
2
+ TRAIN_DATA = PATH + "/data/membrane/train.csv"
3
+ TEST_DATA = PATH + "/data/membrane/test.csv"
4
+ VAL_DATA = PATH + "/data/membrane/val.csv"
5
+
6
+ ESM_MODEL_PATH = "facebook/esm2_t30_150M_UR50D"
7
+ MLM_MODEL_PATH = PATH + "/benchmarks/MLM"
8
+ CKPT_DIR = PATH + "/benchmarks/MLM/model_ckpts"
9
+
10
+ ESM_LAYERS = 3
11
+ BATCH_SIZE = 8
12
+ NUM_EPOCHS = 10
13
+ LEARNING_RATE = 5e-3
14
+ MASKING_RATE = 0.40
benchmarks/MLM/data_loader.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import torch
3
+ import config
4
+ import random
5
+ from torch.utils.data import Dataset, DataLoader
6
+ from torch.nn.utils.rnn import pad_sequence
7
+ from pretrained_models import load_esm2_model
8
+
9
+ class ProteinDataset(Dataset):
10
+ def __init__(self, csv_file, tokenizer):
11
+ self.tokenizer = tokenizer
12
+ self.data = pd.read_csv(csv_file)
13
+ self.max_len = max([len(seq) for seq in self.data['Sequence'].tolist()])
14
+
15
+ def __len__(self):
16
+ return len(self.data)
17
+
18
+ def __getitem__(self, idx):
19
+ sequence = self.data.iloc[idx]['Sequence'].upper()
20
+
21
+ # Randomly mask 15% of the sequence
22
+ num_masks = int(len(sequence) * 0.15)
23
+ mask_indices = random.sample(range(len(sequence)), num_masks)
24
+ masked_sequence = ''.join(["<mask>" if i in mask_indices else sequence[i] for i in range(len(sequence))])
25
+
26
+ inputs = self.tokenizer(masked_sequence, padding="max_length", truncation=True, max_length=self.max_len, return_tensors='pt')
27
+ input_ids = inputs['input_ids'].squeeze()
28
+ attention_mask = inputs['attention_mask'].squeeze()
29
+
30
+ labels = self.tokenizer(masked_sequence, return_tensors='pt', padding='max_length', max_length=self.max_len, truncation=True)['input_ids'].squeeze()
31
+ labels = torch.where(input_ids == self.tokenizer.mask_token_id, labels, -100)
32
+
33
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
34
+
35
+
36
+
37
+ def get_dataloaders(config):
38
+ tokenizer, model = load_esm2_model(config.ESM_MODEL_PATH)
39
+
40
+ train_dataset = ProteinDataset(config.TRAIN_DATA, tokenizer)
41
+ val_dataset = ProteinDataset(config.VAL_DATA, tokenizer)
42
+ test_dataset = ProteinDataset(config.TEST_DATA, tokenizer)
43
+
44
+ train_loader = DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True)
45
+ val_loader = DataLoader(val_dataset, batch_size=config.BATCH_SIZE, shuffle=False)
46
+ test_loader = DataLoader(test_dataset, batch_size=config.BATCH_SIZE, shuffle=False)
47
+
48
+ return train_loader, val_loader, test_loader
benchmarks/MLM/esm_utils.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
3
+
4
+ def load_esm2_model(model_name):
5
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
6
+ masked_model = AutoModelForMaskedLM.from_pretrained(model_name)
7
+ embedding_model = AutoModel.from_pretrained(model_name)
8
+ return tokenizer, masked_model, embedding_model
9
+
10
+
11
+
12
+ def get_latents(model, tokenizer, sequence):
13
+ inputs = tokenizer(sequence, return_tensors="pt").to(model.device)
14
+ with torch.no_grad():
15
+ outputs = model(**inputs)
16
+ return outputs.last_hidden_state.squeeze(0)
benchmarks/MLM/mlm_generate_utils.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+ import config
4
+ import sys
5
+ import pandas as pd
6
+ from esm_utils import get_latents
7
+ from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
8
+
9
+
10
+ def mask_for_de_novo(sequence_length):
11
+ return "<mask>" * sequence_length
12
+
13
+ def generate_de_novo(sequence_length, tokenizer, model):
14
+ masked_sequence = mask_for_de_novo(sequence_length)
15
+ inputs = tokenizer(masked_sequence, return_tensors='pt').to(model.device)
16
+
17
+ with torch.no_grad():
18
+ logits = model(**inputs).logits
19
+ mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
20
+ logits_at_masks = logits[0, mask_token_indices]
21
+
22
+ pred_tokens = []
23
+ for i in mask_token_indices:
24
+ topk_logits, topk_indices = logits_at_masks[i].topk(k=3, dim=-1)
25
+ probabilities = torch.nn.functional.softmax(topk_logits, dim=-1)
26
+ predicted_index = torch.distributions.categorical.Categorical(probabilities).sample()
27
+ predicted_token_id = topk_indices[predicted_index].item()
28
+ predicted_token = tokenizer.decode([predicted_token_id], skip_special_tokens=True)
29
+ pred_tokens.append(predicted_token)
30
+
31
+ generated_sequence = ''.join(pred_tokens)
32
+ perplexity = calculate_perplexity(model, tokenizer, generated_sequence)
33
+
34
+ return (generated_sequence, perplexity)
35
+
36
+
37
+ def mask_for_scaffold(sequence, generate_type):
38
+ if generate_type == "uppercase":
39
+ sequence = ''.join(["<mask>" if residue.isupper() else residue.upper() for residue in sequence])
40
+ elif generate_type == "lowercase":
41
+ sequence = ''.join(["<mask>" if residue.islower() else residue for residue in sequence])
42
+ return sequence
43
+
44
+
45
+ def generate_scaffold(sequence, generate_type, tokenizer, model):
46
+ masked_sequence = mask_for_scaffold(sequence, generate_type)
47
+ inputs = tokenizer(masked_sequence, return_tensors='pt').to(model.device)
48
+
49
+ with torch.no_grad():
50
+ logits = model(**inputs).logits
51
+ mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
52
+ logits_at_masks = logits[0, mask_token_indices]
53
+
54
+ pred_tokens = []
55
+ for i in range(len(mask_token_indices)):
56
+ topk_logits, topk_indices = logits_at_masks[i].topk(k=3, dim=-1)
57
+ probabilities = torch.nn.functional.softmax(topk_logits, dim=-1)
58
+ predicted_index = torch.distributions.categorical.Categorical(probabilities).sample()
59
+ predicted_token_id = topk_indices[predicted_index].item()
60
+ predicted_token = tokenizer.decode([predicted_token_id], skip_special_tokens=True)
61
+
62
+ pred_tokens.append('G' if predicted_token == '' else predicted_token)
63
+
64
+ generated_sequence = masked_sequence
65
+ for token in pred_tokens:
66
+ generated_sequence = generated_sequence.replace("<mask>", token, 1)
67
+
68
+ return generated_sequence, mask_token_indices
69
+
70
+
71
+ def calculate_perplexity(model, tokenizer, generated_sequence, mask_token_indices):
72
+ total_loss = 0.0
73
+ tensor_input = tokenizer.encode(generated_sequence, return_tensors='pt').to(model.device)
74
+
75
+ for i in mask_token_indices:
76
+ masked_input = tensor_input.clone()
77
+ masked_input[0, i] = tokenizer.mask_token_id
78
+
79
+ labels = torch.full(tensor_input.shape, -100).to(model.device)
80
+ labels[0, i] = tensor_input[0, i]
81
+
82
+ with torch.no_grad():
83
+ outputs = model(masked_input, labels=labels)
84
+ total_loss += outputs.loss.item()
85
+
86
+ num_mask_tokens = len(mask_token_indices)
87
+ if num_mask_tokens == 0:
88
+ perplexity = 10000
89
+ else:
90
+ avg_loss = total_loss / num_mask_tokens
91
+ perplexity = math.exp(avg_loss)
92
+
93
+ return perplexity
94
+
95
+
96
+ def calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device):
97
+ og_embeddings = get_latents(esm_model, tokenizer, original_sequence.upper()).to(device)
98
+ new_embeddings = get_latents(esm_model, tokenizer, generated_sequence).to(device)
99
+
100
+ sequence_similarity = torch.nn.functional.cosine_similarity(og_embeddings, new_embeddings, dim=-1)
101
+ cosine_similarity = torch.mean(sequence_similarity).item()
102
+ return cosine_similarity
103
+
104
+
105
+ def calculate_hamming_dist(original_sequence, generated_sequence):
106
+ generated_sequence = generated_sequence.upper()
107
+ original_sequence = original_sequence.upper()
108
+ return sum(1 if original_sequence[i] != generated_sequence[i] else 0 for i in range(len(original_sequence)))
benchmarks/MLM/mlm_lowercase_results.csv ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/MLM/mlm_motif_benchmarking.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import config
3
+ import sys
4
+ import pandas as pd
5
+ from mlm_generate_utils import generate_scaffold, calculate_perplexity, calculate_cosine_sim, calculate_hamming_dist
6
+ from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
7
+
8
+ def motif_benchmarking():
9
+ path = "/workspace/sg666/MDpLM"
10
+
11
+ test_sequences = pd.read_csv(path + "/data/membrane/test.csv")['Sequence'].tolist()
12
+
13
+ tokenizer = AutoTokenizer.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
14
+ mlm_model = AutoModelForMaskedLM.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
15
+ esm_model = AutoModel.from_pretrained("facebook/esm2_t36_3B_UR50D")
16
+
17
+ device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
18
+ mlm_model.to(device)
19
+ esm_model.to(device)
20
+
21
+ for generate_case in ['uppercase', 'lowercase']:
22
+ case_results = []
23
+ for original_sequence in test_sequences:
24
+ generated_sequence, mask_token_idx = generate_scaffold(original_sequence, generate_case, tokenizer, mlm_model)
25
+ perplexity = calculate_perplexity(mlm_model, tokenizer, generated_sequence, mask_token_idx)
26
+ cos_sim = calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device)
27
+ hamming_distance = calculate_hamming_dist(original_sequence, generated_sequence)
28
+
29
+ case_results.append([original_sequence, generated_sequence, perplexity, cos_sim, hamming_distance])
30
+
31
+ print(case_results)
32
+ sys.stdout.flush()
33
+
34
+ df = pd.DataFrame(case_results, columns=['Original Sequence', 'Generated Sequence', 'Perplexity', 'Cosine Similarity', 'Hamming Distance'])
35
+ df.to_csv(path + f'/benchmarks/MLM/mlm_{generate_case}_results.csv', index=False)
36
+
37
+
38
+ if __name__ == "__main__":
39
+ motif_benchmarking()
benchmarks/MLM/mlm_uppercase_results.csv ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/MLM/model.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import config
2
+ import torch
3
+ import torch.nn as nn
4
+ from pretrained_models import load_esm2_model
5
+ from transformers import AutoModelForMaskedLM, AutoTokenizer, AutoModel
6
+
7
+ class MembraneTokenizer:
8
+ def __init__(self, esm_model_path=config.ESM_MODEL_PATH):
9
+ self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
10
+
11
+ def __getattr__(self, name):
12
+ return getattr(self.tokenizer, name)
13
+
14
+ def __call__(self, *args, **kwargs):
15
+ return self.tokenizer(*args, **kwargs)
16
+
17
+ def save_tokenizer(self, save_dir):
18
+ self.tokenizer.save_pretrained(save_dir)
19
+
20
+ def load_tokenizer(self, load_dir):
21
+ self.tokenizer.save_pretrained(load_dir)
22
+
23
+ class MembraneMLM:
24
+ def __init__(self, esm_model_path=config.ESM_MODEL_PATH):
25
+ self.model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
26
+ self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
27
+
28
+ def __getattr__(self, name):
29
+ return getattr(self.model, name)
30
+
31
+ def __call__(self, *args, **kwargs):
32
+ return self.model(*args, **kwargs)
33
+
34
+ def freeze_model(self):
35
+ # Disable parameter updates for all layers
36
+ for param in self.model.parameters():
37
+ param.requires_grad = False
38
+
39
+ def unfreeze_n_layers(self):
40
+ # Count number of encoder layers
41
+ model_layers = len(self.model.esm.encoder.layer)
42
+
43
+ # Enable parameter updates for the last 3 encoder layers
44
+ for i, layer in enumerate(self.model.esm.encoder.layer):
45
+ if i >= model_layers-config.ESM_LAYERS:
46
+ for module in layer.attention.self.key.modules():
47
+ for param in module.parameters():
48
+ param.requires_grad = True
49
+ for module in layer.attention.self.query.modules():
50
+ for param in module.parameters():
51
+ param.requires_grad = True
52
+ for module in layer.attention.self.value.modules():
53
+ for param in module.parameters():
54
+ param.requires_grad = True
55
+
56
+ def forward(self, **inputs):
57
+ return self.model(**inputs)
58
+
59
+ def save_model(self, save_dir):
60
+ self.model.save_pretrained(save_dir)
61
+ self.tokenizer.save_pretrained(save_dir)
62
+
63
+ def load_model(self, load_dir):
64
+ self.model = AutoModel.from_pretrained(load_dir)
65
+ self.tokenizer = AutoTokenizer.from_pretrained(load_dir)
benchmarks/MLM/pretrained_models.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModel, EsmForMaskedLM, AutoModelForMaskedLM
3
+
4
+ def load_esm2_model(esm_model_path):
5
+ tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
6
+ model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
7
+ return tokenizer, model
8
+
9
+ def load_mlm_model(esm_model_path, ckpt_path):
10
+ tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
11
+ model = AutoModelForMaskedLM.from_pretrained(ckpt_path)
12
+ return tokenizer, model
benchmarks/MLM/screen_mlm_cosine_hamming.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ path = "/home/sg666/MDpLM/benchmarks/MLM"
4
+
5
+ df = pd.read_csv(path + "/mlm_uppercase_results.csv")
6
+
7
+ all_sequences = df['Original Sequence'].tolist()
8
+ seq_len_sum = sum(len(seq) for seq in all_sequences)
9
+ ppls = [ppl for ppl in df['Perplexity'].tolist() if ppl != 10000]
10
+
11
+ ppl_mean = sum(ppls) / len(ppls)
12
+ cos_mean = df.loc[:, 'Cosine Similarity'].mean()
13
+ hamming_mean = sum(dist for dist in df['Hamming Distance'].tolist()) / seq_len_sum
14
+
15
+ print(ppl_mean)
16
+ print(cos_mean)
17
+ print(hamming_mean)
benchmarks/MLM/train_and_test.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import config
3
+ import math
4
+ import sys
5
+ import os
6
+ from tqdm import tqdm
7
+ from torch.optim import Adam
8
+ from torch.optim.lr_scheduler import CosineAnnealingLR
9
+ from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer, AutoConfig
10
+ from pretrained_models import load_esm2_model
11
+ from model import MembraneMLM, MembraneTokenizer
12
+ from data_loader import get_dataloaders
13
+
14
+ def save_hyperparams(ckpt_dir):
15
+ hyperparms_txt_file = os.path.join(ckpt_dir, "hyperparameters.txt")
16
+ with open(hyperparms_txt_file, 'w') as f:
17
+ for k, v in vars(config).items():
18
+ if k.isupper():
19
+ f.write(f"{k}: {v}\n")
20
+
21
+ def train_and_validate(model, optimizer, device, train_loader, val_loader, num_epochs, ckpt_dir):
22
+ best_val_loss = float('inf')
23
+
24
+ for epoch in range(num_epochs):
25
+ print(f"EPOCH {epoch+1}/{num_epochs}")
26
+ sys.stderr.flush()
27
+ total_train_loss = 0.0
28
+ weighted_total_train_loss = 0.0
29
+ total_masked_train_tokens = 0
30
+
31
+ model.train()
32
+ train_update_interval = len(train_loader) // 4
33
+
34
+ with tqdm(enumerate(train_loader), desc="Training batch", total=len(train_loader), leave=True, position=0, ncols=100) as trainbar:
35
+ for step, inputs in trainbar:
36
+ inputs = {k: v.to(device) for k, v in inputs.items()}
37
+ optimizer.zero_grad()
38
+ outputs = model(**inputs)
39
+ train_loss = outputs.loss
40
+ train_loss.backward()
41
+ optimizer.step()
42
+
43
+ num_mask_tokens = (inputs["input_ids"] == tokenizer.mask_token_id).sum().item()
44
+ total_masked_train_tokens += num_mask_tokens
45
+
46
+ total_train_loss += train_loss.item()
47
+ weighted_total_train_loss += train_loss.item() * num_mask_tokens
48
+
49
+ if (step+1) % train_update_interval == 0:
50
+ trainbar.update(train_update_interval)
51
+
52
+ avg_train_loss = total_train_loss / len(train_loader)
53
+ avg_train_neg_log_likelihood = weighted_total_train_loss / total_masked_train_tokens
54
+ train_perplexity = math.exp(avg_train_neg_log_likelihood)
55
+
56
+ # Save model every epoch
57
+ train_ckpt_path = os.path.join(config.CKPT_DIR, f'epoch{epoch+1}')
58
+ model.save_model(train_ckpt_path)
59
+ save_hyperparams(train_ckpt_path)
60
+
61
+ # Validate model
62
+ if val_loader:
63
+ model.eval()
64
+ total_val_loss = 0.0
65
+ weighted_total_val_loss = 0.0
66
+ total_masked_val_tokens = 0.0
67
+
68
+ with torch.no_grad():
69
+ val_update_interval = len(val_loader) // 4
70
+
71
+ with tqdm(enumerate(val_loader), desc='Validiation batch', total=len(val_loader), leave=True, position=0) as valbar:
72
+ for step, inputs in valbar:
73
+ inputs = {k: v.to(device) for k, v in inputs.items()}
74
+ val_loss = model(**inputs).loss.item()
75
+
76
+ num_mask_tokens = (inputs['input_ids'] == tokenizer.mask_token_id).sum().item()
77
+ total_masked_val_tokens += num_mask_tokens
78
+
79
+ total_val_loss += val_loss
80
+ weighted_total_val_loss += val_loss * num_mask_tokens
81
+
82
+ if (step+1) % val_update_interval == 0:
83
+ valbar.update(val_update_interval)
84
+
85
+ avg_val_loss = total_val_loss / len(val_loader)
86
+ avg_val_neg_log_likelihood = weighted_total_val_loss / total_masked_val_tokens
87
+ val_perplexity = math.exp(avg_val_neg_log_likelihood)
88
+
89
+ # Save the best model based on validation loss
90
+ if avg_val_loss < best_val_loss:
91
+ best_val_loss = avg_val_loss
92
+ val_ckpt_path = os.path.join(config.CKPT_DIR, "best_model_epoch")
93
+ model.save_model(val_ckpt_path)
94
+ save_hyperparams(val_ckpt_path)
95
+
96
+
97
+ print(f"Average train loss: {avg_train_loss}")
98
+ print(f"Average train perplexity: {train_perplexity}\n")
99
+ sys.stdout.flush()
100
+
101
+ print(f"Average validation loss: {avg_val_loss}")
102
+ print(f"Average validation perplexity: {val_perplexity}\n")
103
+ sys.stdout.flush()
104
+
105
+
106
+ return avg_train_loss, train_perplexity, avg_val_loss, val_perplexity
107
+
108
+
109
+ def test(model, test_loader, device):
110
+ model.to(device).eval()
111
+ total_test_loss = 0.0
112
+ weighted_total_test_loss = 0.0
113
+ total_masked_test_tokens = 0.0
114
+
115
+ with torch.no_grad():
116
+ for step, inputs in enumerate(test_loader):
117
+ inputs = {k: v.to(device) for k, v in inputs.items()}
118
+ outputs = model(**inputs)
119
+ test_loss = outputs.loss.item()
120
+
121
+ num_mask_tokens = (inputs["input_ids"] == tokenizer.mask_token_id).sum().item()
122
+ total_masked_test_tokens += num_mask_tokens
123
+
124
+ total_test_loss += test_loss
125
+ weighted_total_test_loss += test_loss * num_mask_tokens
126
+
127
+ avg_test_loss = total_test_loss / len(test_loader)
128
+ avg_test_neg_log_likilehood = weighted_total_test_loss / total_masked_test_tokens
129
+ test_perplexity = math.exp(avg_test_neg_log_likilehood)
130
+
131
+ return avg_test_loss, test_perplexity
132
+
133
+
134
+ if __name__ == "__main__":
135
+ device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
136
+ print(device)
137
+
138
+ model = MembraneMLM()
139
+ model.to(device)
140
+ model.freeze_model()
141
+ model.unfreeze_n_layers()
142
+ tokenizer = model.tokenizer
143
+
144
+ train_loader, val_loader, test_loader = get_dataloaders(config)
145
+ optimizer = Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config.LEARNING_RATE)
146
+
147
+ # Train and test the model
148
+ avg_train_loss, train_ppl, avg_val_loss, val_ppl = train_and_validate(model, optimizer, device, train_loader, val_loader, config.NUM_EPOCHS, config.CKPT_DIR)
149
+ avg_test_loss, test_ppl = test(model, test_loader, device)
150
+
151
+ results_dict = {"Average train loss": avg_train_loss,
152
+ "Average train perplexity": train_ppl,
153
+ "Average val loss": avg_val_loss,
154
+ "Average val perplexity": val_ppl,
155
+ "Average test loss": avg_test_loss,
156
+ "Average test perplexity": test_ppl,
157
+ }
158
+
159
+ print("TRAIN AND TEST RESULTS")
160
+ for k, v in results_dict.items():
161
+ print(f"{k}: {v}\n")
162
+
163
+ # Save training and test performance
164
+ with open(config.CKPT_DIR + "/train_test_results.txt", 'w') as f:
165
+ for k, v in results_dict.items():
166
+ f.write(f'{k}: {v}\n')
167
+
168
+
169
+ ### Get embeddings from model
170
+ # best_model_pth = config.MLM_MODEL_PATH + "/best_model"
171
+
172
+ # model = AutoModel.from_pretrained(best_model_pth)
173
+ # tokenizer = AutoTokenizer.from_pretrained(best_model_pth)
174
+ # model.eval().to(device)
175
+
176
+ # random_seq = "WPIQMVYSLGQHADYMQWFTIMPPPIEMIFVWHNCTQHDYSFRERAGEVDQARMKTEMAR"
177
+ # inputs = tokenizer(random_seq, return_tensors='pt')
178
+ # inputs = {k: v.to(device) for k, v in inputs.items()}
179
+ # inputs = inputs['input_ids']
180
+ # print(inputs)
181
+ # with torch.no_grad():
182
+ # outputs = model(inputs).last_hidden_state
183
+ # print(outputs)
184
+ # print(outputs.size())
benchmarks/Supervised/.DS_Store ADDED
Binary file (6.15 kB). View file
 
benchmarks/Supervised/Localization/cell_localization_predictor.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader, Dataset
5
+ from transformers import AutoModel, AutoTokenizer
6
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
7
+
8
+ from tqdm import tqdm
9
+ from datetime import datetime
10
+ import pandas as pd
11
+ import numpy as np
12
+ import pickle
13
+ import os
14
+
15
+ # Hyperparameters dictionary
16
+ path = "/workspace/sg666/MDpLM"
17
+
18
+ hyperparams = {
19
+ "batch_size": 1,
20
+ "learning_rate": 5e-4,
21
+ "num_epochs": 5,
22
+ "esm_model_path": "facebook/esm2_t33_650M_UR50D",
23
+ 'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
24
+ "mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
25
+ "train_data": path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv",
26
+ "test_data" : path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv",
27
+ }
28
+
29
+ # Helper functions to obtain all embeddings for a sequence
30
+ def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
31
+ esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
32
+ esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
33
+ mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
34
+ mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
35
+
36
+ return esm_tokenizer, esm_model, mlm_model, mdlm_model
37
+
38
+ def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device):
39
+ if embedding_type == "esm":
40
+ inputs = tokenizer(sequence, return_tensors='pt').to(device)
41
+ with torch.no_grad():
42
+ embeddings = esm_model(**inputs).last_hidden_state.squeeze(0)
43
+
44
+ elif embedding_type == "mlm":
45
+ inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
46
+ with torch.no_grad():
47
+ embeddings = mlm_model(inputs).last_hidden_state.squeeze(0)
48
+
49
+ elif embedding_type == "mdlm":
50
+ inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
51
+ with torch.no_grad():
52
+ embeddings = mdlm_model(inputs).last_hidden_state.squeeze(0)
53
+
54
+ return embeddings
55
+
56
+
57
+ # Dataset class can load pickle file
58
+ class LocalizationDataset(Dataset):
59
+ def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
60
+ self.data = pd.read_csv(csv_file)
61
+ self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
62
+ self.embedding_type = embedding_type
63
+ self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
64
+ self.device = device
65
+
66
+ def __len__(self):
67
+ return len(self.data)
68
+
69
+ def __getitem__(self, idx):
70
+ sequence = self.data.iloc[idx]['Sequence']
71
+ embeddings = get_latents(self.embedding_type, self.tokenizer, self.mlm_model, self.esm_model, self.mdlm_model,
72
+ sequence, self.device)
73
+
74
+ label = 0 if self.data.iloc[idx]['Cell membrane'] == 0 else 1
75
+ labels = torch.tensor(label, dtype=torch.float32).view(1,1).squeeze(-1)
76
+
77
+ return embeddings, labels
78
+
79
+ # Predict localization with MLP head using pooled embeddings
80
+ class LocalizationPredictor(nn.Module):
81
+ def __init__(self, input_dim):
82
+ super(LocalizationPredictor, self).__init__()
83
+ self.classifier = nn.Sequential(
84
+ nn.Linear(input_dim, 640),
85
+ nn.ReLU(),
86
+ nn.Linear(640, 1)
87
+ )
88
+
89
+ def forward(self, embeddings):
90
+ logits = self.classifier(embeddings)
91
+ logits = torch.mean(logits, dim=1)
92
+ probs = torch.nn.functional.softmax(logits)
93
+ return probs
94
+
95
+ # Training function
96
+ def train(model, dataloader, optimizer, criterion, device):
97
+ model.train()
98
+ total_loss = 0
99
+ for embeddings, labels in tqdm(dataloader):
100
+ embeddings, labels = embeddings.to(device), labels.to(device)
101
+ optimizer.zero_grad()
102
+ outputs = model(embeddings)
103
+ loss = criterion(outputs, labels)
104
+ loss.backward()
105
+ optimizer.step()
106
+ total_loss += loss.item()
107
+ return total_loss / len(dataloader)
108
+
109
+ # Evaluation function
110
+ def evaluate(model, dataloader, device):
111
+ model.eval()
112
+ preds, true_labels = [], []
113
+ with torch.no_grad():
114
+ for embeddings, labels in tqdm(dataloader):
115
+ embeddings, labels = embeddings.to(device), labels.to(device)
116
+ outputs = model(embeddings)
117
+ preds.append(outputs.cpu().numpy())
118
+ true_labels.append(labels.cpu().numpy())
119
+ return preds, true_labels
120
+
121
+ # Metrics calculation
122
+ def calculate_metrics(preds, labels, threshold=0.5):
123
+ all_metrics = []
124
+ for pred, label in zip(preds, labels):
125
+ pred = (pred > threshold).astype(int)
126
+
127
+ accuracy = accuracy_score(label, pred)
128
+ precision = precision_score(label, pred, average='macro')
129
+ recall = recall_score(label, pred, average='macro')
130
+ f1_macro = f1_score(label, pred, average='macro')
131
+ f1_micro = f1_score(label, pred, average='micro')
132
+
133
+ all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro])
134
+
135
+ avg_metrics = np.mean(all_metrics, axis=0)
136
+ print(avg_metrics)
137
+ return avg_metrics
138
+
139
+
140
+
141
+ if __name__ == "__main__":
142
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
143
+
144
+ for embedding_type in ['mdlm', 'esm', 'mlm']:
145
+ # Initialize datasets
146
+ train_dataset = LocalizationDataset(embedding_type,
147
+ hyperparams['train_data'],
148
+ hyperparams['esm_model_path'],
149
+ hyperparams['mlm_model_path'],
150
+ hyperparams['mdlm_model_path'],
151
+ device)
152
+ test_dataset = LocalizationDataset(embedding_type,
153
+ hyperparams['test_data'],
154
+ hyperparams['esm_model_path'],
155
+ hyperparams['mlm_model_path'],
156
+ hyperparams['mdlm_model_path'],
157
+ device)
158
+
159
+ # Prepare dataloaders
160
+ train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
161
+ test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
162
+
163
+ # Initialize model, optimizer, and loss function
164
+ input_dim=640 if embedding_type=="mdlm" else 1280
165
+ model = LocalizationPredictor(input_dim=input_dim).to(device)
166
+ optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
167
+ criterion = nn.BCELoss()
168
+
169
+ # Initialize main directory model checkpoints
170
+ base_checkpoint_dir = f"{path}/benchmarks/Supervised/Localization/model_checkpoints/{embedding_type}"
171
+ # Initialize subdirectory and name it based on hyperparameters
172
+ hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}"
173
+ model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str)
174
+ os.makedirs(model_checkpoint_dir, exist_ok=True)
175
+
176
+
177
+ # Training loop
178
+ for epoch in range(hyperparams["num_epochs"]):
179
+ # Train the model
180
+ train_loss = train(model, train_dataloader, optimizer, criterion, device)
181
+ print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
182
+ print(f"TRAIN LOSS: {train_loss:.4f}")
183
+ print("\n")
184
+
185
+ # Save the model checkpoint for the current epoch
186
+ checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth")
187
+ torch.save({
188
+ 'epoch': epoch + 1,
189
+ 'model_state_dict': model.state_dict(),
190
+ 'optimizer_state_dict': optimizer.state_dict(),
191
+ 'loss': train_loss,
192
+ }, checkpoint_path)
193
+ print(f"Checkpoint saved at {checkpoint_path}\n")
194
+
195
+ # Save hyperparameters only once
196
+ if epoch == 0: # Hyperparameters don't change midway through training
197
+ hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt")
198
+ with open(hyperparams_file, 'w') as f:
199
+ for key, value in hyperparams.items():
200
+ f.write(f"{key}: {value}\n")
201
+ print(f"Hyperparameters saved at {hyperparams_file}\n")
202
+
203
+ # Evaluate model on test dataset
204
+ print("Test set")
205
+ test_preds, test_labels = evaluate(model, test_dataloader, device)
206
+ test_metrics = calculate_metrics(test_preds, test_labels)
207
+ print(test_metrics)
208
+ print("TEST METRICS:")
209
+ print(f"Accuracy: {test_metrics[0]:.4f}")
210
+ print(f"Precision: {test_metrics[1]:.4f}")
211
+ print(f"Recall: {test_metrics[2]:.4f}")
212
+ print(f"F1 Macro Score: {test_metrics[3]:.4f}")
213
+ print(f"F1 Micro Score: {test_metrics[4]:.4f}")
214
+
215
+ #Save test results
216
+ test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt")
217
+ with open(test_results_file, 'w') as f:
218
+ f.write("TEST METRICS:\n")
219
+ f.write(f"Accuracy: {test_metrics[0]:.4f}\n")
220
+ f.write(f"Precision: {test_metrics[1]:.4f}\n")
221
+ f.write(f"Recall: {test_metrics[2]:.4f}\n")
222
+ f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n")
223
+ f.write(f"F1 Micro: {test_metrics[4]:.4f}\n")
224
+ print(f"Test results saved at {test_results_file}\n")
benchmarks/Supervised/Localization/process_cell_local_data.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ path = "/home/sg666/MDpLM/benchmarks/Supervised/Localization"
4
+
5
+ train_val = pd.read_csv(path + "/deeploc2.0_train_val.csv")
6
+ test = pd.read_csv(path + "/deeploc2.0_test.csv")
7
+
8
+ train_val = train_val[train_val['Sequence'].apply(len) < 1024].reset_index(drop=True)
9
+ test = test[test['Sequence'].apply(len) < 1024].reset_index(drop=True)
10
+
11
+ train_val.to_csv(path + "/true_deeploc2.0_cell-local_train-val.csv", index=False)
12
+ test.to_csv(path + "/true_deeploc2.0_cell-local_test.csv", index=False)
benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ca38d78cc8fbc8777a23f456477901f5af4bbfda7a0908081effd09adbe7e94
3
+ size 12568908
benchmarks/Supervised/Membrane Type/membrane_type_predictor.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader, Dataset
5
+ from transformers import AutoModel, AutoTokenizer
6
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
7
+
8
+ from tqdm import tqdm
9
+ from datetime import datetime
10
+ import pandas as pd
11
+ import numpy as np
12
+ import pickle
13
+ import os
14
+
15
+ # Hyperparameters dictionary
16
+ path = "/workspace/sg666/MDpLM"
17
+
18
+ hyperparams = {
19
+ "batch_size": 1,
20
+ "learning_rate": 5e-4,
21
+ "num_epochs": 5,
22
+ "esm_model_path": "facebook/esm2_t33_650M_UR50D",
23
+ 'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
24
+ "mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
25
+ "train_data": path + "/benchmarks/Supervised/Membrane Type/membrane_type_train.csv",
26
+ "test_data" : path + "/benchmarks/Supervised/Membrane Type/membrane_type_test.csv",
27
+ }
28
+
29
+ # Helper functions to obtain all embeddings for a sequence
30
+ def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
31
+ esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
32
+ esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
33
+ mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
34
+ mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
35
+ return esm_tokenizer, esm_model, mlm_model, mdlm_model
36
+
37
+ def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device):
38
+ if embedding_type == "esm":
39
+ inputs = tokenizer(sequence, return_tensors='pt').to(device)
40
+ with torch.no_grad():
41
+ outputs = esm_model(**inputs)
42
+ embeddings = outputs.last_hidden_state.squeeze(0)
43
+
44
+ elif embedding_type == "mlm":
45
+ inputs = tokenizer(sequence, return_tensors='pt').to(device)
46
+ with torch.no_grad():
47
+ embeddings = mlm_model(**inputs).last_hidden_state.squeeze(0)
48
+
49
+ elif embedding_type == "mdlm":
50
+ inputs = tokenizer(sequence, return_tensors="pt").to(device)
51
+ with torch.no_grad():
52
+ embeddings = mdlm_model(**inputs).last_hidden_state.squeeze(0)
53
+
54
+ return embeddings
55
+
56
+
57
+ # Dataset class can load pickle file
58
+ class MembraneDataset(Dataset):
59
+ def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
60
+ self.data = pd.read_csv(csv_file)
61
+ self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
62
+
63
+ self.embedding_type = embedding_type
64
+ self.device = device
65
+
66
+ self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
67
+
68
+ # Create multi-class label list
69
+ self.data['label'] = self.data.iloc[:, 3:7].values.tolist()
70
+ self.data['label'] = self.data['label']
71
+
72
+ def __len__(self):
73
+ return len(self.data)
74
+
75
+ def __getitem__(self, idx):
76
+ sequence = self.data.iloc[idx]['Sequence']
77
+ embeddings = get_latents(self.embedding_type, self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model,
78
+ sequence, self.device)
79
+ labels = torch.tensor(self.data.iloc[idx]['label'], dtype=torch.float32)
80
+
81
+ return embeddings, labels
82
+
83
+
84
+ # Predict localization with MLP head using pooled embeddings
85
+ class MembranePredictor(nn.Module):
86
+ def __init__(self, input_dim, num_classes):
87
+ super(MembranePredictor, self).__init__()
88
+ self.classifier = nn.Sequential(
89
+ nn.Linear(input_dim, 640),
90
+ nn.ReLU(),
91
+ nn.Linear(640, num_classes)
92
+ )
93
+
94
+ def forward(self, embeddings):
95
+ logits = self.classifier(embeddings)
96
+ logits = torch.mean(logits, dim=1)
97
+ probs = torch.sigmoid(logits)
98
+ return probs # pass logits of dimension 1x8 (8-class distribution) to CE loss
99
+
100
+ # Training function
101
+ def train(model, dataloader, optimizer, criterion, device):
102
+ model.train()
103
+ total_loss = 0
104
+ for embeddings, labels in tqdm(dataloader):
105
+ embeddings, labels = embeddings.to(device), labels.to(device)
106
+ optimizer.zero_grad()
107
+ outputs = model(embeddings)
108
+ loss = criterion(outputs, labels)
109
+ loss.backward()
110
+ optimizer.step()
111
+ total_loss += loss.item()
112
+ return total_loss / len(dataloader)
113
+
114
+ # Evaluation function
115
+ def evaluate(model, dataloader, device):
116
+ model.eval()
117
+ preds, true_labels = [], []
118
+ with torch.no_grad():
119
+ for embeddings, labels in tqdm(dataloader):
120
+ embeddings, labels = embeddings.to(device), labels.to(device)
121
+ outputs = model(embeddings)
122
+ preds.append(outputs.cpu().numpy())
123
+ true_labels.append(labels.cpu().numpy())
124
+ return preds, true_labels
125
+
126
+ # Metrics calculation
127
+ def calculate_metrics(preds, labels, threshold=0.5):
128
+ all_metrics = []
129
+ for pred, label in zip(preds, labels):
130
+ pred = (pred > threshold).astype(int)
131
+
132
+ accuracy = accuracy_score(label, pred)
133
+ precision = precision_score(label, pred, average='macro')
134
+ recall = recall_score(label, pred, average='macro')
135
+ f1_macro = f1_score(label, pred, average='macro')
136
+ f1_micro = f1_score(label, pred, average='micro')
137
+
138
+ all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro])
139
+
140
+ avg_metrics = np.mean(all_metrics, axis=0)
141
+ return avg_metrics
142
+
143
+
144
+ if __name__ == "__main__":
145
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
146
+
147
+ for embedding_type in ['mdlm', 'mlm', 'esm']:
148
+ # Initialize datasets
149
+ train_dataset = MembraneDataset(embedding_type,
150
+ hyperparams['train_data'],
151
+ hyperparams['esm_model_path'],
152
+ hyperparams['mlm_model_path'],
153
+ hyperparams['mdlm_model_path'],
154
+ device)
155
+ test_dataset = MembraneDataset(embedding_type,
156
+ hyperparams['test_data'],
157
+ hyperparams['esm_model_path'],
158
+ hyperparams['mlm_model_path'],
159
+ hyperparams['mdlm_model_path'],
160
+ device)
161
+
162
+ # Prepare dataloaders
163
+ train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
164
+ test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
165
+
166
+ # Initialize model, optimizer, and loss function
167
+ input_dim=640 if embedding_type=="mdlm" else 1280
168
+ model = MembranePredictor(input_dim=input_dim, num_classes=4).to(device)
169
+ optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
170
+ criterion = nn.CrossEntropyLoss()
171
+
172
+ # Initialize main directory model checkpoints
173
+ base_checkpoint_dir = f"{path}/benchmarks/Supervised/Membrane Type/model_checkpoints/{embedding_type}"
174
+ # Initialize subdirectory and name it based on hyperparameters
175
+ hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}"
176
+ model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str)
177
+ os.makedirs(model_checkpoint_dir, exist_ok=True)
178
+
179
+ # Training loop
180
+ for epoch in range(hyperparams["num_epochs"]):
181
+ # Train the model
182
+ train_loss = train(model, train_dataloader, optimizer, criterion, device)
183
+ print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
184
+ print(f"TRAIN LOSS: {train_loss:.4f}")
185
+ print("\n")
186
+
187
+ # Save the model checkpoint for the current epoch
188
+ checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth")
189
+ torch.save({
190
+ 'epoch': epoch + 1,
191
+ 'model_state_dict': model.state_dict(),
192
+ 'optimizer_state_dict': optimizer.state_dict(),
193
+ 'loss': train_loss,
194
+ }, checkpoint_path)
195
+ print(f"Checkpoint saved at {checkpoint_path}\n")
196
+
197
+ # Save hyperparameters only once
198
+ if epoch == 0: # Hyperparameters don't change midway through training
199
+ hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt")
200
+ with open(hyperparams_file, 'w') as f:
201
+ for key, value in hyperparams.items():
202
+ f.write(f"{key}: {value}\n")
203
+ print(f"Hyperparameters saved at {hyperparams_file}\n")
204
+
205
+
206
+ # Evaluate model on test dataset
207
+ print("Test set")
208
+ test_preds, test_labels = evaluate(model, test_dataloader, device)
209
+ test_metrics = calculate_metrics(test_preds, test_labels)
210
+ print("TEST METRICS:")
211
+ print(f"Accuracy: {test_metrics[0]:.4f}")
212
+ print(f"Precision: {test_metrics[1]:.4f}")
213
+ print(f"Recall: {test_metrics[2]:.4f}")
214
+ print(f"F1 Macro Score: {test_metrics[3]:.4f}")
215
+ print(f"F1 Micro Score: {test_metrics[4]:.4f}")
216
+
217
+ # Save test results
218
+ test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt")
219
+ with open(test_results_file, 'w') as f:
220
+ f.write("TEST METRICS:\n")
221
+ f.write(f"Accuracy: {test_metrics[0]:.4f}\n")
222
+ f.write(f"Precision: {test_metrics[1]:.4f}\n")
223
+ f.write(f"Recall: {test_metrics[2]:.4f}\n")
224
+ f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n")
225
+ f.write(f"F1 Micro: {test_metrics[4]:.4f}\n")
226
+ print(f"Test results saved at {test_results_file}\n")
benchmarks/Supervised/Membrane Type/membrane_type_test.csv ADDED
The diff for this file is too large to render. See raw diff
 
benchmarks/Supervised/Membrane Type/membrane_type_train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16b8eec677afa2de578d04ee1a0fc9582b2f8cfc47622cbd6374309cd6ab96f3
3
+ size 12335695
benchmarks/Supervised/Membrane Type/split_membrane_type_data.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Splits the DeepLoc 2.1 membrane type data into train/val and testing splits
2
+ # Partition value of "4" indicates testing data
3
+
4
+ import pandas as pd
5
+
6
+ path = "/workspace/a03-sgoel/MDpLM/benchmarks/DeepLoc/Membrane Type"
7
+
8
+ df = pd.read_csv(path + "/unsplit_membrane_type_all.csv")
9
+ df = df.drop(columns=['Unnamed: 0'])
10
+
11
+ train = df[df['Partition'] != 4]
12
+ test = df[df['Partition'] == 4]
13
+
14
+ train.to_csv(path + "/membrane_type_train.csv", index=False)
15
+ test.to_csv(path + "/membrane_type_test.csv", index=False)
benchmarks/Supervised/Membrane Type/unsplit_membrane_type_all.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d878da32a06092f880262048e3c1eb692721c274b0a458fcc712a0dcbd80c71
3
+ size 15683507
benchmarks/Supervised/Solubility/solubility_transformer.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader, Dataset
5
+ from transformers import AutoModel, AutoTokenizer
6
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
7
+ from sklearn.model_selection import ParameterGrid
8
+ from tqdm import tqdm
9
+ import pandas as pd
10
+ import numpy as np
11
+ import sys
12
+ import os
13
+ from datetime import datetime
14
+ import logging
15
+
16
+ logging.getLogger("transformers").setLevel(logging.ERROR)
17
+
18
+ # Hyperparameters dictionary
19
+ path = "/workspace/sg666/MDpLM"
20
+ hyperparams = {
21
+ "train_data": path + "/data/membrane/train.csv",
22
+ "val_data": path + "/data/membrane/val.csv",
23
+ "test_data": path + "/data/membrane/test.csv",
24
+ 'esm_model_path': "facebook/esm2_t33_650M_UR50D",
25
+ 'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
26
+ "mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
27
+ "batch_size": 1,
28
+ "learning_rate": 5e-5,
29
+ "num_epochs": 2,
30
+ "num_layers": 4,
31
+ "num_heads": 16,
32
+ "dropout": 0.5
33
+ }
34
+
35
+
36
+ # Helper functions to obtain all embeddings for a sequence
37
+ def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
38
+ esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
39
+ esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
40
+ mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
41
+ mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
42
+ return esm_tokenizer, esm_model, mlm_model, mdlm_model
43
+
44
+
45
+ def get_latents(embedding_type, esm_model_path, mlm_model_path, mdlm_model_path, sequence, device):
46
+ tokenizer, esm_model, mlm_model, mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
47
+
48
+ if embedding_type == "esm":
49
+ model = esm_model
50
+ elif embedding_type == "mlm":
51
+ model = mlm_model
52
+ elif embedding_type == "mdlm":
53
+ model = mdlm_model
54
+
55
+ inputs = tokenizer(sequence.upper(), return_tensors="pt").to(device)['input_ids']
56
+ with torch.no_grad():
57
+ embeddings = model(inputs).last_hidden_state.squeeze(0)[1:-1]
58
+
59
+ return embeddings
60
+
61
+
62
+ # Dataset class that loads embeddings and labels
63
+ class SolubilityDataset(Dataset):
64
+ def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
65
+ self.data = pd.read_csv(csv_file).head(5)
66
+ #self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
67
+ self.embedding_type = embedding_type
68
+ self.esm_model_path = esm_model_path
69
+ self.mlm_model_path = mlm_model_path
70
+ self.mdlm_model_path = mdlm_model_path
71
+ self.device = device
72
+
73
+ def __len__(self):
74
+ return len(self.data)
75
+
76
+ def __getitem__(self, idx):
77
+ sequence = self.data.iloc[idx]['Sequence']
78
+ seq_len = len(sequence)
79
+ embeddings = get_latents(self.embedding_type, self.esm_model_path, self.mlm_model_path, self.mdlm_model_path,
80
+ sequence, self.device)
81
+ # Lowercase residues = soluble, uppercase = insoluble
82
+ label = [0 if residue.islower() else 1 for residue in sequence]
83
+ labels = torch.tensor(label, dtype=torch.float32)
84
+
85
+ return embeddings, labels, seq_len
86
+
87
+ # Transformer model class
88
+ class SolubilityPredictor(nn.Module):
89
+ def __init__(self, input_dim, hidden_dim, num_heads, num_layers, dropout):
90
+ super(SolubilityPredictor, self).__init__()
91
+ #self.embedding_dim = input_dim
92
+ # self.self_attention = nn.MultiheadAttention(input_dim, num_heads, dropout)
93
+ # encoder_layer = nn.TransformerEncoderLayer(
94
+ # d_model=hidden_dim,
95
+ # nhead=num_heads,
96
+ # dropout=dropout,
97
+ # batch_first=True
98
+ # )
99
+ # self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
100
+ self.classifier = nn.Sequential(
101
+ nn.Linear(input_dim, 320),
102
+ nn.ReLU(),
103
+ nn.Linear(320, 1)
104
+ )
105
+ self.sigmoid = nn.Sigmoid()
106
+
107
+ def forward(self, embeddings):
108
+ #attn_out, _ = self.self_attention(embeddings, embeddings, embeddings)
109
+ #transformer_out = self.transformer_encoder(attn_out)#.squeeze(1).mean(dim=1)
110
+ #logits = self.classifier(transformer_out)
111
+
112
+ logits = self.classifier(embeddings)
113
+ probs = self.sigmoid(logits.squeeze(-1))
114
+
115
+ return probs # Get probabilities of dimension seq_len
116
+
117
+
118
+ # Training function
119
+ def train(model, train_loader, val_loader, optimizer, criterion, device):
120
+ """
121
+ Trains the model for a single epoch.
122
+ Args:
123
+ model (nn.Module): model that will be trained
124
+ dataloader (DataLoader): PyTorch DataLoader with training data
125
+ optimizer (torch.optim): optimizer
126
+ criterion (nn.Module): loss function
127
+ device (torch.device): device (GPU or CPU to train the model
128
+ Returns:
129
+ total_loss (float): model loss
130
+ """
131
+ # Training loop
132
+ model.train()
133
+ train_loss = 0
134
+
135
+ prog_bar = tqdm(total=len(train_loader), leave=True, file=sys.stdout)
136
+ for step, batch in enumerate(train_loader, start=1):
137
+ embeddings, labels, seq_len = batch
138
+ embeddings, labels = embeddings.to(device), labels.to(device)
139
+ embeddings = embeddings.squeeze(1)
140
+ optimizer.zero_grad()
141
+ outputs = model(embeddings)
142
+ loss = criterion(outputs, labels)
143
+ loss.backward()
144
+ optimizer.step()
145
+ train_loss += loss.item()
146
+ prog_bar.update()
147
+ sys.stdout.flush()
148
+ prog_bar.close()
149
+
150
+ # Validation loop
151
+ model.eval()
152
+ val_loss = 0.0
153
+
154
+ prog_bar = tqdm(total=len(val_loader), leave=True, file=sys.stdout)
155
+ for step, batch in enumerate(val_loader):
156
+ embeddings, labels, seq_len = batch
157
+ embeddings, labels = embeddings.to(device), labels.to(device)
158
+ with torch.no_grad():
159
+ outputs = model(embeddings)
160
+ loss = criterion(outputs, labels)
161
+ val_loss += loss.item()
162
+ prog_bar.update()
163
+ sys.stdout.flush()
164
+ prog_bar.close()
165
+
166
+ return train_loss/len(train_loader), val_loss/len(val_loader)
167
+
168
+
169
+
170
+ # Evaluation function
171
+ def evaluate(model, dataloader, device):
172
+ """
173
+ Performs inference on a trained model
174
+ Args:
175
+ model (nn.Module): the trained model
176
+ dataloader (DataLoader): PyTorch DataLoader with testing data
177
+ device (torch.device): device (GPU or CPU) to be used for inference
178
+ Returns:
179
+ preds (list): predicted per-residue disorder labels
180
+ true_labels (list): ground truth per-residue disorder labels
181
+ """
182
+ model.eval()
183
+ preds, true_labels = [], []
184
+ with torch.no_grad():
185
+ for embeddings, labels, seq_len in tqdm(dataloader):
186
+ embeddings, labels = embeddings.to(device), labels.to(device)
187
+ outputs = model(embeddings)
188
+ preds.append(outputs.cpu().numpy())
189
+ true_labels.append(labels.cpu().numpy())
190
+ return preds, true_labels
191
+
192
+ # Metrics calculation
193
+ def calculate_metrics(preds, labels, threshold=0.5):
194
+ """
195
+ Calculates metrics to assess model performance
196
+ Args:
197
+ preds (list): model's predictions
198
+ labels (list): ground truth labels
199
+ threshold (float): minimum threshold a prediction must be met to be considered disordered
200
+ Returns:
201
+ accuracy (float): accuracy
202
+ precision (float): precision
203
+ recall (float): recall
204
+ f1 (float): F1 score
205
+ roc_auc (float): AUROC score
206
+ """
207
+ flat_binary_preds, flat_prob_preds, flat_labels = [], [], []
208
+
209
+ for pred, label in zip(preds, labels):
210
+ flat_binary_preds.extend((pred > threshold).astype(int).flatten())
211
+ flat_prob_preds.extend(pred.flatten())
212
+ flat_labels.extend(label.flatten())
213
+
214
+ flat_binary_preds = np.array(flat_binary_preds)
215
+ flat_prob_preds = np.array(flat_prob_preds)
216
+ flat_labels = np.array(flat_labels)
217
+
218
+ accuracy = accuracy_score(flat_labels, flat_binary_preds)
219
+ precision = precision_score(flat_labels, flat_binary_preds)
220
+ recall = recall_score(flat_labels, flat_binary_preds)
221
+ f1 = f1_score(flat_labels, flat_binary_preds)
222
+ roc_auc = roc_auc_score(flat_labels, flat_prob_preds)
223
+
224
+ return accuracy, precision, recall, f1, roc_auc
225
+
226
+
227
+ if __name__ == "__main__":
228
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
229
+ print(device)
230
+
231
+ for embedding_type in ['mlm', 'esm', 'mdlm']:
232
+ best_val_loss = float('inf')
233
+ best_model = None
234
+
235
+ # Load train and test dataset
236
+ train_dataset = SolubilityDataset(embedding_type,
237
+ hyperparams['train_data'],
238
+ hyperparams['esm_model_path'],
239
+ hyperparams['mlm_model_path'],
240
+ hyperparams['mdlm_model_path'],
241
+ device)
242
+ test_dataset = SolubilityDataset(embedding_type,
243
+ hyperparams['test_data'],
244
+ hyperparams['esm_model_path'],
245
+ hyperparams['mlm_model_path'],
246
+ hyperparams['mdlm_model_path'],
247
+ device)
248
+ val_dataset = SolubilityDataset(embedding_type,
249
+ hyperparams['val_data'],
250
+ hyperparams['esm_model_path'],
251
+ hyperparams['mlm_model_path'],
252
+ hyperparams['mdlm_model_path'],
253
+ device)
254
+
255
+ # Load PyTorch datasets into DataLoaders
256
+ train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
257
+ val_dataloader = DataLoader(val_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
258
+ test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
259
+
260
+ # Set device to GPU
261
+
262
+ ### Grid search to explore hyperparameter space
263
+ # Define hyperparameters
264
+ param_grid = {
265
+ 'learning_rate': [5e-4],
266
+ 'batch_size': [1],
267
+ 'num_heads': [4],
268
+ 'num_layers': [2],
269
+ 'dropout': [0.5],
270
+ 'num_epochs': [5]
271
+ }
272
+
273
+ # Loop over the parameter grid
274
+ grid = ParameterGrid(param_grid)
275
+ for params in grid:
276
+ # Update hyperparameters
277
+ hyperparams.update(params)
278
+
279
+ # Update model with the new set of hyperparms
280
+ input_dim=640 if embedding_type=="mdlm" else 1280
281
+ hidden_dim = input_dim
282
+ model = SolubilityPredictor(
283
+ input_dim=input_dim,
284
+ hidden_dim=hidden_dim,
285
+ num_layers=hyperparams["num_layers"],
286
+ num_heads=hyperparams["num_heads"],
287
+ dropout=hyperparams['dropout']
288
+ )
289
+ model = model.to(device) # Push model to GPU
290
+
291
+ # Update optimizer
292
+ optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
293
+ criterion = nn.BCELoss()
294
+ num_epochs = hyperparams['num_epochs']
295
+
296
+ # Train
297
+ for epoch in range(hyperparams["num_epochs"]):
298
+ print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
299
+ train_loss, val_loss = train(model, train_dataloader, val_dataloader, optimizer, criterion, device)
300
+ print(f"TRAIN LOSS: {train_loss:.4f}")
301
+ print(f"VALIDATION LOSS: {val_loss:.4f}\n")
302
+ sys.stdout.flush()
303
+
304
+ if val_loss < best_val_loss:
305
+ best_val_loss = val_loss
306
+ best_model = model.state_dict()
307
+
308
+ # Evaluate model on test sequences
309
+ print("TEST METRICS:")
310
+ test_preds, test_labels = evaluate(model, test_dataloader, device)
311
+ test_metrics = calculate_metrics(test_preds, test_labels)
312
+ print(f"Accuracy: {test_metrics[0]:.4f}")
313
+ print(f"Precision: {test_metrics[1]:.4f}")
314
+ print(f"Recall: {test_metrics[2]:.4f}")
315
+ print(f"F1 Score: {test_metrics[3]:.4f}")
316
+ print(f"ROC AUC: {test_metrics[4]:.4f}")
317
+ print(f"\n")
318
+ sys.stdout.flush()
319
+
320
+ ### Save model and metrics for this hyperparameter combination
321
+ folder_name = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}/lr{hyperparams['learning_rate']}_bs{hyperparams['batch_size']}_epochs{hyperparams['num_epochs']}_layers{hyperparams['num_layers']}_heads{hyperparams['num_heads']}_drpt{hyperparams['dropout']}"
322
+ os.makedirs(folder_name, exist_ok=True)
323
+
324
+ # Save current model for this hyperparameter combination
325
+ model_file_path = os.path.join(folder_name, "model.pth")
326
+ torch.save(model.state_dict(), model_file_path)
327
+
328
+ # Save hyperparameters and test metrics to txt file
329
+ output_file_path = os.path.join(folder_name, "hyperparams_and_test_results.txt")
330
+ with open(output_file_path, 'w') as out_file:
331
+ for key, value in hyperparams.items():
332
+ out_file.write(f"{key}: {value}\n")
333
+
334
+ out_file.write("\nTEST METRICS:\n")
335
+ out_file.write(f"Accuracy: {test_metrics[0]:.4f}\n")
336
+ out_file.write(f"Precision: {test_metrics[1]:.4f}\n")
337
+ out_file.write(f"Recall: {test_metrics[2]:.4f}\n")
338
+ out_file.write(f"F1 Score: {test_metrics[3]:.4f}\n")
339
+ out_file.write(f"ROC AUC: {test_metrics[4]:.4f}\n")
340
+
341
+ # Save the best model and its hyperparameters
342
+ if best_model is not None:
343
+ best_model_dir = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}"
344
+ os.makedirs(best_model_dir, exist_ok=True)
345
+ best_model_path = os.path.join(best_model_dir, "best_model.pth")
346
+ torch.save(best_model, best_model_path)
347
+
348
+ # Save the hyperparameters for the best model
349
+ best_hyperparams_path = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}/best_model_hyperparams.txt"
350
+ with open(best_hyperparams_path, 'w') as out_file:
351
+ out_file.write("Best Validation Loss: {:.4f}\n".format(best_val_loss))
352
+ for key, value in hyperparams.items():
353
+ out_file.write(f"{key}: {value}\n")