Upload 34 files
Browse files- .gitattributes +3 -0
- benchmarks/.DS_Store +0 -0
- benchmarks/Generation/.DS_Store +0 -0
- benchmarks/Generation/ProtGPT2/protgpt2_finetune.py +70 -0
- benchmarks/Generation/ProtGPT2/protgpt2_generate.py +55 -0
- benchmarks/Generation/ProtGPT2/protgpt2_generated_sequences.csv +101 -0
- benchmarks/Generation/ProtGPT2/protgpt2_test.txt +0 -0
- benchmarks/Generation/ProtGPT2/protgpt2_train.txt +0 -0
- benchmarks/Generation/ProtGPT2/run_clm.py +657 -0
- benchmarks/Generation/Visualize/analyze_mdlm_denovo_gen.py +7 -0
- benchmarks/Generation/Visualize/esm_umap.png +0 -0
- benchmarks/Generation/Visualize/esm_umap.py +111 -0
- benchmarks/Generation/Visualize/mdlm_de-novo_generation_results.csv +101 -0
- benchmarks/MLM/config.py +14 -0
- benchmarks/MLM/data_loader.py +48 -0
- benchmarks/MLM/esm_utils.py +16 -0
- benchmarks/MLM/mlm_generate_utils.py +108 -0
- benchmarks/MLM/mlm_lowercase_results.csv +0 -0
- benchmarks/MLM/mlm_motif_benchmarking.py +39 -0
- benchmarks/MLM/mlm_uppercase_results.csv +0 -0
- benchmarks/MLM/model.py +65 -0
- benchmarks/MLM/pretrained_models.py +12 -0
- benchmarks/MLM/screen_mlm_cosine_hamming.py +17 -0
- benchmarks/MLM/train_and_test.py +184 -0
- benchmarks/Supervised/.DS_Store +0 -0
- benchmarks/Supervised/Localization/cell_localization_predictor.py +224 -0
- benchmarks/Supervised/Localization/process_cell_local_data.py +12 -0
- benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv +0 -0
- benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv +3 -0
- benchmarks/Supervised/Membrane Type/membrane_type_predictor.py +226 -0
- benchmarks/Supervised/Membrane Type/membrane_type_test.csv +0 -0
- benchmarks/Supervised/Membrane Type/membrane_type_train.csv +3 -0
- benchmarks/Supervised/Membrane Type/split_membrane_type_data.py +15 -0
- benchmarks/Supervised/Membrane Type/unsplit_membrane_type_all.csv +3 -0
- benchmarks/Supervised/Solubility/solubility_transformer.py +353 -0
.gitattributes
CHANGED
@@ -38,3 +38,6 @@ benchmarks/DeepLoc/membrane_type_train.csv filter=lfs diff=lfs merge=lfs -text
|
|
38 |
benchmarks/DeepLoc/OG_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
|
39 |
data/uniref/100k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
|
40 |
data/uniref/200k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
38 |
benchmarks/DeepLoc/OG_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
|
39 |
data/uniref/100k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
|
40 |
data/uniref/200k_seqs/train.csv filter=lfs diff=lfs merge=lfs -text
|
41 |
+
benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv filter=lfs diff=lfs merge=lfs -text
|
42 |
+
benchmarks/Supervised/Membrane[[:space:]]Type/membrane_type_train.csv filter=lfs diff=lfs merge=lfs -text
|
43 |
+
benchmarks/Supervised/Membrane[[:space:]]Type/unsplit_membrane_type_all.csv filter=lfs diff=lfs merge=lfs -text
|
benchmarks/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
benchmarks/Generation/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
benchmarks/Generation/ProtGPT2/protgpt2_finetune.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
|
7 |
+
# Format sequence inputs based on ProtGPT fine-tuning requirements
|
8 |
+
def modify_sequences(sequence):
|
9 |
+
modified_sequence = sequence.upper()
|
10 |
+
modified_sequence = '\n'.join([modified_sequence[i:i+60] for i in range(0, len(modified_sequence), 60)])
|
11 |
+
|
12 |
+
fasta = "<|endoftext|>"
|
13 |
+
modified_sequence = fasta + "\n" + modified_sequence
|
14 |
+
|
15 |
+
return modified_sequence
|
16 |
+
|
17 |
+
# Function to save sequences to txt files
|
18 |
+
def to_txt_file(df, filename):
|
19 |
+
with open(filename, 'w') as f:
|
20 |
+
for sequence in df['Sequence']:
|
21 |
+
f.write(sequence + '\n')
|
22 |
+
|
23 |
+
|
24 |
+
# Modify the sequences
|
25 |
+
path = "/workspace/sg666/MDpLM"
|
26 |
+
|
27 |
+
train = pd.read_csv(path + "/data/membrane/train.csv")
|
28 |
+
val = pd.read_csv(path + "/data/membrane/val.csv")
|
29 |
+
test = pd.read_csv(path + "/data/membrane/test.csv")
|
30 |
+
|
31 |
+
train = pd.concat([train, val])
|
32 |
+
|
33 |
+
train['Sequence'] = train['Sequence'].apply(modify_sequences)
|
34 |
+
test['Sequence'] = test['Sequence'].apply(modify_sequences)
|
35 |
+
|
36 |
+
|
37 |
+
# Save the modified sequences as txt files
|
38 |
+
to_txt_file(train, path + '/benchmarks/Generation/ProtGPT2/protgpt2_train.txt')
|
39 |
+
to_txt_file(test, path + '/benchmarks/Generation/ProtGPT2/protgpt2_test.txt')
|
40 |
+
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("nferruz/ProtGPT2")
|
43 |
+
model = AutoModelForCausalLM.from_pretrained("nferruz/ProtGPT2")
|
44 |
+
|
45 |
+
finetune_protgpt2_command = [
|
46 |
+
"python", "run_clm.py",
|
47 |
+
"--model_name_or_path", "nferruz/ProtGPT2",
|
48 |
+
"--train_file", "protgpt2_train.txt",
|
49 |
+
"--validation_file", "protgpt2_test.txt",
|
50 |
+
"--tokenizer_name", "nferruz/ProtGPT2",
|
51 |
+
"--num_train_epochs", "10",
|
52 |
+
"--logging_steps", "1",
|
53 |
+
"--logging_dir", "test",
|
54 |
+
"--do_train",
|
55 |
+
"--do_eval",
|
56 |
+
"--output_dir", "/workspace/sg666/MDpLM/benchmarks/Generation/ProtGPT2/finetuned_models",
|
57 |
+
"--overwrite_output_dir",
|
58 |
+
"--learning_rate", "3e-04",
|
59 |
+
"--per_device_train_batch_size", "2",
|
60 |
+
"--evaluation_strategy", "epoch"
|
61 |
+
]
|
62 |
+
|
63 |
+
try:
|
64 |
+
result = subprocess.run(finetune_protgpt2_command, check=True, text=True, capture_output=True)
|
65 |
+
except subprocess.CalledProcessError as e:
|
66 |
+
print("Command failed with the following error:")
|
67 |
+
print(e.stderr) # Print standard error output
|
68 |
+
print("Command output:")
|
69 |
+
print(e.stdout) # Print standard output if needed
|
70 |
+
|
benchmarks/Generation/ProtGPT2/protgpt2_generate.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Function to calculate perplexity of each generated sequence
|
9 |
+
def calculate_perplexity(sequence, model, tokenizer):
|
10 |
+
sequence = "<|endoftext|>" + sequence + "<|endoftext|>"
|
11 |
+
input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0)
|
12 |
+
input_ids = input_ids.to(device)
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(input_ids, labels=input_ids)
|
15 |
+
loss, _ = outputs[:2]
|
16 |
+
return math.exp(loss)
|
17 |
+
|
18 |
+
if __name__ == "__main__":
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
|
20 |
+
path = "/workspace/sg666/MDpLM/benchmarks/Generation/ProtGPT2"
|
21 |
+
|
22 |
+
# Load fine-tuned model and tokenizer
|
23 |
+
model_path = path + "/finetuned_models/checkpoint-4510"
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
26 |
+
|
27 |
+
# Generate sequences
|
28 |
+
protgpt2 = pipeline('text-generation', model=model_path, device=device)
|
29 |
+
sequences = protgpt2("", max_length=100, do_sample=True, top_k=950, repetition_penalty=1.5, num_return_sequences=100, eos_token_id=0)
|
30 |
+
|
31 |
+
# Store generated sequences and their associated perplexities
|
32 |
+
generated_sequences = []
|
33 |
+
perplexities = []
|
34 |
+
|
35 |
+
|
36 |
+
# Calculate PPL for sequences
|
37 |
+
for item in sequences:
|
38 |
+
raw_sequence = item['generated_text']
|
39 |
+
ppl = calculate_perplexity(raw_sequence, model.to(device), tokenizer)
|
40 |
+
generated_sequences.append(raw_sequence)
|
41 |
+
perplexities.append(ppl)
|
42 |
+
|
43 |
+
# Clean the generated sequences
|
44 |
+
cleaned_sequences = [seq.replace('\n', '').replace('<|endoftext|>', '') for seq in generated_sequences]
|
45 |
+
|
46 |
+
# Create df with cleaned sequences and perplexities
|
47 |
+
df = pd.DataFrame({"Sequence": cleaned_sequences, "Perplexity": perplexities})
|
48 |
+
df.sort_values(by='Perplexity', inplace=True)
|
49 |
+
|
50 |
+
# Save results
|
51 |
+
df.to_csv(path + "/protgpt2_generated_sequences.csv", index=False)
|
52 |
+
|
53 |
+
# View the average de novo generation perplexity
|
54 |
+
avg_generation_ppl = df.loc[:, 'Perplexity'].mean()
|
55 |
+
print(f'Average de novo generation perplexity: {avg_generation_ppl}')
|
benchmarks/Generation/ProtGPT2/protgpt2_generated_sequences.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Sequence,Perplexity
|
2 |
+
LAPSVVTGVAQSSPLTIVTNPKEPRQPVPASDGADYLKTIPGFAVIRNGGSNGDPVLRGMFGSRLNILTNGGMMLGACPNRMDAPTSYISPETYDKLTVIKGPQTVLWGPGASAGTILFEREPERFGELGSRVNASLLAGSNGRFDKVLDAAAGNRLGYLRFTGNHAQSDDYEDGAGNTVPSRWKKWNGDVAVGWTPDEDTLIELTAGKGDGEARYAGRGMDGSQFKRESLGLRFVKSNVSDVLEKVEAQVYYNYADHIMDNFRLRTPDPSMPMT,2.6532732777535712
|
3 |
+
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQNLNGLDNLLYMSSTSDDSGNATITITFAPGTNPDIAQVQVQNKLSLATPILPQAVQRQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLGIKLATG,2.829348107084168
|
4 |
+
MAYRSTTLLALLALVLLYLVSGALVFRALEQPHEQQAQRELGEVREKFLRAHPCVSDQELGLLIKEVADALGGGADPETQSTSAWDLGSAFFFSGTIITTIGYGNVALRTDAGRLFCIFYAAXFGIPFTLLFLTAVGDRLGSSLRHGIGHIEAIFLKWHVPPELVRVLSEMLFLLVGCLLFVLTPTFVFCYMEDWSKLEAIYFVIVTLTTVGFGDYVAGADPRQDSPAYQPLVWFWILLGLAYFASVSAML,3.119025307842878
|
5 |
+
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQQMNGLDGLRYISSNSAGNGQASIQLNFEQGVDPDIAQVQVQNKLQLAMPLLPQAVKEQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLG,3.775355043694786
|
6 |
+
LFLTMAEAQLRYKTTEECLAYFGVSETTGLTPDQVKRHLEKYGHNELPAEEGKSLWELVIEQFEDLLVRILLLAACISFVLAWFEEGEETVTAFVEPFIILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILSIKSTTLRVDQSILTGESVSVAKSSDAVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVSTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICIAVWLINIGHFNDPVHGGSWI,4.136701078251139
|
7 |
+
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQNMNGIDNLMYMSSNSDSTGTAQITLTFESGTDADIAQVQVQNKLQLAMPLLPQAVQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLG,4.210716900525416
|
8 |
+
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQIIEQQMNGLDGLRYISSNSAGNGQASIQLTFESGTDADIAQVQVQNKLQLAMPLLPQEVAQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPAS,4.526996795741569
|
9 |
+
MLKIIIPTTMLLPMTWMSKHNMIWINATVHSLLISLISLSLLNQLGENSLNFSLTFFSDSLSAPLLVLTTWLLPLMLMASQSHLSKETTTRKKLYITMLLILLQLFLIMTFTATELILFYIFESASLPTLLMITRWGNQTERLNAGLYFLMYTLAGSLPLLVALVYIQNTTGSLNFLIIHWSTHTSASFVSQTLLLMAWMAAMAVMAKMPLYGVHLWLPKAHVEAPIAGSMVLAAVLLKLGGYGMLRITTILNPLTNYMAYPFLMLCLWGMI,4.629232424547782
|
10 |
+
AKFINRWLFSTNHKDIGTLYLLFGAWAGMVGTALSLLIRAELGQPGTLLGDDQIYNVVVTGHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSFLLLLASSMVEAGAGCGWTVYPPLAGNLAHAGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMSQYQTPLFVWSVMITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPXVLILILPFFGIVTEASAIPRIFNWMVTFHGQLMYHHMWIIGVL,5.0608380016313275
|
11 |
+
LVEKDPIKTSFEKWAKPGHFSRTLAKGPNTTTWIWNLHADAHDFDSYTSDLEEISRKVFSAHFGHLAVVTIWLSGMIFHGAKFSNYEAWLSDPLNVRPSAQVVWPLVGQDILNGDMGDGTYNGFQVMTSGLFQLWRASGITNEYQLYCTAIGGLVMAALMLFAGWFHYHKAAPKLAWFQDVETALNHHLSGLLGLGCLSWAGHQIHVSLPVNKLLDAGVAAKDIPLPHEFILDPAKFASLLPGLTQGLTPFFTLNWSEYSDFLTFKGGLNPVTGGL,5.597917119515088
|
12 |
+
MVRKVYVTLQGKVQGVFFRAHTQATAKQLGVVGWVRNTSDGTVEGEAQGPADKVDEMINWLHRGPPQAQIESHEFNSEKKELEAFSSFHIRY,5.635017933300935
|
13 |
+
EFGFWEIKFPEYLKGRPTTGRPEWVQDVDLVNKWAVPGLNPPHHFSPPVNLTGVEDTLPVSWVMVSMVVGFVLIVATAGNILVIIAVFTSRALKAPQNLFLVSLASADILVATLVIPFAMANEVMGYWYFGKAWCEIYLALDVLFCTSSAWHLCAISLDRYWSITQAIEYNLKRTPRRTKAIIITVWVISAVISFPPRCEINDQKWYYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRDLSRKSGRPSLLSEVHAAKSLAIL,6.370992471309986
|
14 |
+
MVYVSRISVFAFLGALASVAYGQVTPPNFGTEQDRVNFTKQIVPVLKEKCVVCHGPDKTKGKLRLDLRIEAFKGGESGESIDVIPGDPENSELLERITSKDPEFRMPPKSEHKPLTEAEIALLKQWILEGAKYDPAWAFTPPKRTDLPKVKRDEWAKNDVDRFILAKLESEGLTPNPEADKATLIRRVTLDLTGLPPTPAEVDAFLADKSPNAYEKVVDRLLASPHFGERWGRHWLDVARWAESNGFERNTIRNIWSYRDWVIKALNDDVPYDQFTVEQL,7.0499259667086145
|
15 |
+
SSNAKTVLITGGTGFVGRALVKRLLSTTKHTIVVPYREEADLHDVKVLQVKGDLRDAASLDAAFEGVDCVFHLASYGMSGPEMFELNVEGTRNVVEACLRHGVRRLIHVSSIAVMGEPSDHPRREADESLPARQATAYAKSKVEAERIVLEANGSDGLETVVVRPPMVWGPGDTQFLPRLVRMARRGLRPVIGNGKSLVSMVYIDNLVDGLIAAMDHPEARGKTYFLSNDGHASQREFIETVARAIGRPAPKLTLPVPVLYWAARLLG,7.429969652690046
|
16 |
+
SPELIEQLLQNYLQLPDAEKRKVADQLQTSNIRYCYLLASEKGWLDRVESCLAAEGCDVLQPDHTGRNLLQVVASVSPDHTARLIRALLARGADVHAQDSLGNTVLHILILQPNKTFACQMYNEILILGAKLCPTVNLEAVLNHQGLTPFKLAGVEGNTVMFQHLMQKRKHVQWTCGPLTSTLYDLTEIDSSGDDQSLLELIVTTKKREARQILEQTPVKELVSLKWKRYGRPYFCVLGAIYILYIICFTMCCVYRPLKPRITNRTNPRDNMTSLEL,7.910941817905356
|
17 |
+
ADVNLNARDLHGMTPLHLAAKNGHDKVVQLLLKKGALVNIQDKLGSTPLLEAIRGRREDTVKLLVEHGADIRAQDSLGNTVLHILILQPENSTSLKFAEMLYDMILLRSGTWELETTQPNDGLTALQLAAKMGKAEILKYILSREIKEKPLRSLSRKFTDWAYGPVSSSLYDLTNVDSSGNTVLHAMIMVADNTPQNSRFVKQMYNLLLSKGARLCPNVPNHQGLTPFKLAGVEGNIVMQEILRGTTISIPFTCITCGKKDTRFRGMSCEN,8.179497248919981
|
18 |
+
DPFNNFFRRSKIAVCGLVFFVLFIIYMVLGSMIFSAIERDHEQQAQRELGEVREKFLISHPCVSDQELGVLIEEVADALGGGADPETQSTSAWDLGSAFFFSGTIITTIGYGNVALRTDTMGRLFCIFYALVGIPLFGILLAGVGDRLGSSLRHGIGHIEAIFLKWHVPPGLVRVLSAMLFLAIGCLLFVTLPAYVFSHMEDWSKLEAIYFVIVTLTTVGFGDYVAGADPRQDSPQYQPLVWFWILL,8.306921086116862
|
19 |
+
GPQSFVHFTKQSLALIEQRIAERKSKEPKPSSDLEAGKQLPFIYGDIPPGMVSEPLEDLDPYYADKKTFIVLNKGKTIFRFNATPALYMLSPFSPLRRISIKILVHSLFSMLIMCTILTNCIFMTMNNPPDWTKNVEYTFTGIYTFESLVKILARGFCVGEFTFLRDPWNWLDFVVIVFAYVTEFVVAEFVSFSALRAFRVLRALKTISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGLQLFMGNLRKKCFFPDG,8.471762198050271
|
20 |
+
MLKIIIPTTMLLPMTWMSKHNMIWINATVHSLLISLISLSLLNQLGENSLNFSLTFFSDSLSAPLLVLTTWLLPLMLMASQSHLSKETTTRKKLYITQLILLQLFLIMTFTATELILFYIFESATLLPTLLIILRWGYQPERLQAGLYFLFYTLIGGVLVLLSILMIYVNTNSLLIHTLPMFNSTMETSLYTKIMWFACMMAFPTKMGLFPIHMWLPVVHSESPLAGSCILAGILLKLGGYGMMRVVTILNPLTNYMAYPFLML,8.583127806228307
|
21 |
+
MVLRLVVLALLCWTPGLWAQQADTLTLDEVVVTATRSEQNLQDVPASVSVITAEDLQRQAPRTLGEALRYVPGVFLDGTGRTNGQDINMRGYDHRGVLVLVDGIRQGTDTGHLNGTFLDPALIKRVEIVRGPSAALYGNGAAGGVVNFITRQPSDQLTGSVRLNTSLPQHDGDNSQQFYSLMAGNRLGEEGKLGMLASFSRQEKGQARDGAGNDIASLDEDSLSGKLLWQLTPEQQLDFSLDHYRFKTNAPHNPVNTDFTRHTRQESDSTVRRFFNQVQ,10.282136779067205
|
22 |
+
RPLVAIDFGTTYSGYAFSFKNQPETITLHWNSEISKALRKPTVLLIDSNMKEVAFGYEAENKFATLALDAEEKHFFFEKFKMALYDKNDRSILPSMRSANGTEKKAIDVFAEAIRYFKDHALKTINSTYPIDKQDLLWSVTVPSDWDARSKEFMRQAAVKAGLGEASLASEPEAASMYCVEHEVNKFGDEIKSGTKFLVVDVGGGTVDITVHEVLENNHLKELYKASGGPYGSVGIDQEFMKLFQLIVGAEAIEQFKIK,11.589466291126676
|
23 |
+
MKVSVIIPTYNERENLEELFSRIDQALQGLNYEIVVVDDDSPDRTWEKAQELSSKYPIKVCRRTKEKGLSSAVIRGFKEASGDVFVVMDADLQHPPEVIPKLIEAIKNGSDIAIGSRYVKGARVENWPFYRKLISKGALVVTKIPLKDLKDMRDFACGFIAIKREVIEKIEFDENLTYGKILKILKYCWGGFSKVVEVPFTFGIRARGESKLKGKTIFEYLRHIWSLNYTFFRILKLIFALGFTFFGVSLAYLTLVLMEKYFLWYIPGWAN,12.090375297427133
|
24 |
+
PGMQLNEFSSSGLGRAYSGEGAIADDAGNVSRNPALITMFDRPTFSAGAVYIDPDVNISGNSPLGAPGGTPSDREMKLVPTSHIALPINDRLAFGFAAYSNFGLATDYGDTFVGSTTPTDLEMKLNSLSIGGNAEITDQLSFGASITYQRAKIERFAGDLGQLVAGQIMQSPAGQTQQALLQAQSQGNLGSALAYANGIDSNTKIAHLNGNQWGYGWNAGILYELDKNNRYALTYRSEVKMTFKGNYSNDMPGYYEMNVPAWHNVSLYHE,12.173339409793382
|
25 |
+
DASRVYYEDRSVVKEDGSVVKEGPFDLQSTLTLSGVVRDYASGTPLADAEITLTGPAFRAHTNSYGKFVFEGLAAGTYTLSVSRFGYEPVSETIAVSAGQTVESNVALFALASEVEILEVTADADPVFNTGDVATSVGTREMKEIPTVVGDVDVIKSLQLLPGVASAGEGTSGFYVRGGGIDQNLYLLDNIPVYNVGHLFGFFSTFNSDAIKDVTLYKGGVPARYGGRLSSVLDITMKEGNSDKLSGTASIGLLPASAKLQGPI,12.228122271950522
|
26 |
+
GAVIDLSTATFDFGGSYTGVAVGDTITAVVTAPTEDDYVFQWFKDNVLQSGATGNSYTLTAAEAGKAIKVVVSGSKSGYTSTAKTAAVTTAITASSLTLTADKTKLTVGDTVTLTASLSDKNGNAVTGRTVKWSSSNTAVATVSSSGLVTGVAAGSATITASAEGQNGNGTANITVVAASVSSISLSPASASVAVGATQQFTASGYDSSGNVVTSGRVVTWASSNTSVATVSASGLVTAVAAGTATITVTSGGKSGNATVTVTAATLSSLSVSSSNL,12.23423450162324
|
27 |
+
MQTYNNPEVTYDWWAGNARFANLSGLFIAAHVAQAALIMFWAGAFTLYEISWLTADQSMGEQGLILLPHLATLGLGVGDGGQVTDTFPFFVVGAVHLIASAVLGAGALFHTFRAPSDLAAASGAAKRFQNFNPDLSKLGFISRHTHAAKPELWSQLIGGKHKTTTGFAWVGVANPDGSITGMGTAGIQVKQAEGVTVGLAHYIWPLIGAAALAATICFFGYNSVITDIAYPEKKLEAVTFGYQTQAFDAFTQAGQVIGSTT,12.368396953842797
|
28 |
+
AEGIRFAIVDEVDSILIDEARTPLIISGQAEDRTKELYKTLTRVLKSLEGGDYSVDLKNKKVSLTEKGVERTEKLLREAGIISDGTDNLYVVGAIFHAQKVATGKDYLFRKIVEKGRVEYTIDEKLKQVVIVDEFTGRMMPGRRYSDGLHQAIEAKEGVKVQRESKTLATITYQNYFRMFKKIMKLAGMTGTAETEAEEFKKIYNLDVVVIPTNEPMKRQDHSDQVYKTKREKYNAVLKEIEELYKKGQPVLVGTTSVEASEFLSNLLKKRKIPHNVLNAKPHAREAEIIAQAGRKG,12.697313288610662
|
29 |
+
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTTVQVIEQAMNGVDNLMYMSSNSDSTGTATITLTFESGTDADIAQVQVQNKLQLAMPLLPQAVQQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMLIRMKPDLLNKFGVTANDVISALQAQNSQVEAGSIGQLPTLPGTPLQLSITAQSQLSSEQEYGDIMLRVNQDGSRVLLRDVAKIELGGENYDIIAE,12.907199708267516
|
30 |
+
DPLYYTNNGGLGFVLSALFGYIWWGYKSGTPKEVRSEAKYRMLTVVVPCYNEEKTIGRTLCSLLESDYPEDKLQIICVNDGSKDKTLKELEDFELRDVPLVVIDQENGGKARALNAGIDAASYEYFACVDADSQVEKDSLKKMVHHFADPSVGCVAGRVKIGNRWSWISRLIDLIQYLIAFNIGRRGINSITVVPGAIGAYRVSAIKKAGGFSGKTMTEDLDLTIAILRAGYKVVYEPEAICWTDVPETLKGFTRQRFRWTYGTMQ,12.993370901156627
|
31 |
+
DISAEDRMWSDAEKRMEWQRIDRQVANRKSHGKRGLLSRIFGWIFRRNMDEKALKLLPHIKCYTPAEIANAIQSMTPEDLQRYELRASMFSLADKSNSGTISLTEFRNILECLGVQMSPTELQTLFQVCDRDQNDMINFNEFANRFHEPAKEIGFNVAVLLTNLSEHVPHDPRLRNFLELAESVLNYFQPFLGRIEIMGSAKRIERVYFEISESSRTQWEKPQVKESREFRTMQEIYNHIYYHTKQKENENVQRNAERWKMIEENKL,13.119829828981848
|
32 |
+
SDITRLIVLVGTTLGVVLFLALAVWIVKSFWSPYQEINDWALALTIVDVLVVGVPAALPSTVTVTMALGAAYLAKKQALVKKLPIVESLSGVEILCSDKTGTLTKNKLSLQGAWLPGSEKPEQISGLVPEGSRQNITKCIHIAVLCNRASYKDGKLVGTPTEKAILKGLECWGVGYGEMRKKYPLVHQIPFNSTNKFQLSIHDKDNRYLLVMKGAPERVLEKCSTVLLQGKEQPLDEQWHTAFQTAYLSLGGLGERVLGFCQLYLSE,13.625918655212923
|
33 |
+
MEVTLFALLALVVASAIIAWGPVTKPLHPHEALVDVGGHKMHYICQGKGSPTVILEAGGGGGSIEWGWVQPQVAAVSRVCTYDRAGYGWSDPAPHARDAGIVAEELHRLLRAAQVPGPYVLVGHSIGGFNTLHFAARYPQDVAGLVLVDATHEDQYRRWKGYEQEMAPFTSGQALDNLAANVRVMESLPPVDAGKVRDLPVLVLSAGREHPPFDMKLYREQWQREVVDLSNVSDRQKHIVADRSGHHIQFDEPDLVVAAIRE,14.117540370332351
|
34 |
+
MDYHEDDKRFRREELCREAEFLKLKMPTKKVYHISETRGLLKTINSVLQKITDPIQPKVAEHRPQTTKRLSYPFSREKQHLFDLTDRDSFFDSKTRSTIVYEILKRTTCGITSLLANGIYWLAISTPTINEYPSFLSPSLYAAVLPFTFGFVVSFITLPRKALEYIEQNGQGKAAVHHHTHTHDHDAGDVKIVVNDKDLESHVVAGALMFVAALFSLVFHQWWSDYCDVAYTVFIRVRDVIFGHVKWT,14.986517088631075
|
35 |
+
PSNISAWWNFGSLLGACLILQITTGLFLAMHYSPDTTTAFSSLSHICRDVNFGWFIRNLHANGASFFFICIFLHIGRGLYYGSYLYKETWNTGVILLLTVMATAFMGYVLPWGQMSFWGATVITSLAVYLPWWGQHVQKLLFQLIPALLVLLTAWTPFLIGYTLIRETTETESTNYGTPLRLHRIISHHLLLLRAVAXXXXXXXXXXXXXXXXXXEIKAAFWSVFHFILPFMATALAAPRSLLLDEANSTNTLVTTNLIFNFIFFLLPIFPATLSMFSPNLLGDPENFTPANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALAASVLILFLIPFLHKSKQRSTMTF,15.230674054330438
|
36 |
+
SRTSELAVGIFVIIFGIALFFLAMKVSGLVGTNLSDGYTMKAQFDNVNGLKPRAKVTMSGVTIGRVDSITLDPVTRLATVTFDLDGKLTSFNAEQLKEVQKNALDELRYSSDYTQATPAQQMKACSEQMMTLLAPQQKEKKTLEVGDIIATSKSSVIYNDMSTYLNDLIGDLGTIASGVNELWPTLQANFSTVKTMAQNLLTANQQLPQLLGNVQTTSQLLAQDNNNFNKLVTDFALTIDALNAVVSKSGANLDTAIATANDLNTVLTENRQ,15.441068484289472
|
37 |
+
DDVTVVYQNGLPVISVRLPSRRERCQFTLKPISDSVGVFLRQLQEEDRGIDRVAIYSPDGVRVAASTGIDLLLLDDQLIIREKYQIFINDMSPGAKVAQTAPAREIKWDHEALTEELTYEGQSEKLRDKDRTEVRRTMLNLERRLSDIRRQLAPLEKVRIEISRKMEDKTIQSYALWLMLAVVVCLMGLAWWQVLASLATFCVAVIIMVFVGRNWSAVLQRRRKRMGAEELRHRAYQTHQCHLCAICFTNQKMATLVPCGHVFCEECIKQHL,17.259236085949127
|
38 |
+
DNTTNIVHVPVHYVFIMALPIIMCILGLLLNVLALWVFYGHMKRTTSVVYVINLAIADLLFVLSLPMYIHYYFNKTHWVFGELLCRITGTLFYMNTYCSILFLTCISIHRFLGVCYPFRLNLVKRNYAVCVSVGVWAFVMLACMPTLVFNQTEDYEGNRTICYDHLEDAQRHWALYLQVKVNVFVIGFLIPFLIITFCYSQIVATLLKVEANLAKKKSKAIRLVLTVVTVFVLSQFPYNFILLAKTIKLQQINSSCEFEKIIE,17.688518287684857
|
39 |
+
MDYHEDDKRFRREELCREAEFLKLKMPTKKVYHISETRGLLKTINSVLQKITDPIQPKVAEHRPQTTKRLSYPFSREKQHLFDLTDRDSFFDSKTRSTIVYEILKRTTCGITSLLANGIYSAAYPLHDGDYEGDNVEFYGDYTIHAGDPENGGQCVVITLTDYGNYEPFYSASLEFSRKHFGFSALSVQCELSDVQSFTAVKQQFINLLSSRAPITVRKFVSPEFPRNSDSHDIFSLSCDVSNTGHVTAVTCQVSARFLTRYLTD,17.749448694031326
|
40 |
+
MDNKLTLALAAIMVVLIAFVGINVMNNVNTNPTVVKTATVERGEYVERVDATGKVVAAQSTDLSFPATGEVTWLKVKVGDRVSKGQLLAELDTTDLEAQKNLALSQLEQSRASLALTRQTLARQQALAQTQAVSQQDLDNATNALRVQEAQLNQLRSGSRPEDIAAAQSQLRMAQDDLNRLRNGSRSEELRSLQAQLDVDKAKLNWDQKIVRRNQVRAPFAGVIAERLAEPGALVSPSQPILSLVADDNLEIEANVSEADILHLKPGQKAWFT,18.826645316378666
|
41 |
+
MVSVIIPAYNEEKYLEKCLESVRNQTYKNLEIILVDDGSKDKTLEIAKEYAKKDERVKVVTQENGGVSSARNRGIEESKGEWIAFLDADDYWEENHLEELVKAIESNNCDMSICNAIWYYWWDENKRIIKRLPRESVIEAEDFFKELPIFMLTVVVWNKLFKKELFDSIRFPEGKTYEDTATIVDVLMKCKKVAYLNKALVNYRIREGSASTSFNPAKAKDHLKAIEVAFKEAHAEGLGDVALRAFQRRYVNSII,19.064942570982527
|
42 |
+
MRPNLFLLALPFIALAAPAHAESITVNGDARIRALGKQNYAEVRTHISDNGTKATVDATGHLRIDAPLGERAQVKAYGELEAIYAKPSGDKNKASNTERLAYAGLKFADHGSIDYGRNYGILYDTNAWTDVFPLWGADVLESNTAAYKRTYGNVLTYRNNNAFGYVDGLSFALQYQGKNPTTGEVVKGDRVNSDGRRLGAATVGYDFDGFGIGFAAASSKTEQNGIKKDTDGREYAVAGSAKVGAAQVAGTYAETRNATRFGQTGKGRVE,19.328842227230165
|
43 |
+
DDALPLSYYGTNKGLDRPATGPDRREHRFGFIADASAYPSQQLFIRGKVDVRDYQGSDTLRDDNAYVRLRNLTVGYDNLLPGSPLNVVAQFDLFNVLNATNVKDYQEVLSGGKAAAANFPIPRTYTLGLKLTF,21.699704462300236
|
44 |
+
MAGRKILRDPYIIKLLELTEHNPGKRVTARCTSEGILTVPPDLICCLLIQLPIDSIDHHSFILNLQCKDDYQLILKNGSVLHSSCKYTPGKPAEVKAEGGSISIAITKLQLSDSGLYSCQPPNHEPSHGQLNLTVYKQTGFISVSDTGVGIVRVRAYAERPDDLNVTLTCLVTGVFPHDVTVQWTKNNSPLSKDSSPAEEQQHEDGTFFLYSKLTVDKSRWERGDTYTCVVAHEALPNKITKTLDRSKCQGEGLAPL,21.725914279351123
|
45 |
+
MIMTMTLTMMMVMISNKTHWNSFQMNLMMTSLMILSLGGLPPLTGFLPKWIIITELMKNNNLITASMAMMALLNLFFYTRLIYSTSLMKLYPTNNQTKTKPKMMTHQMKLTALMTITMSSMTLPLAPQLITTELMAFAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTLIMMATSLPIIMKPMTPWWC,22.24920166064802
|
46 |
+
GVVKAAVSFCLAFCLVLCIAVTAVWFLSPTSDLDKKAVLPREYEQFKANQSSDQLRAFAAQYGLDATPAEGATDAMLAKGREIYVVNCSICHGSDARGASGLGVTLNPRPPSFTDPGFAAAHTDGEIFWVIRHGIRNSAMPAWKDKISEQDRWDLVHFLRTFKPESQKELTEAEIAALSVGEKVTMGQALFQEKCIVCHGANGQGNQTVGPVLNPSPRNFTSGVFKLRSTDQGELYAIRNGIRQHGMPPWGSQLKD,23.148315124172598
|
47 |
+
MRTHTGEKPFACDVCDKRFNQKAHLNRHKTIHTGERPFACDICNKKFSEAGHMKIHTRTHTGERPFSCDVCSKKFSQKIHLNTHMRIHTGDKPFVCSVCNKSFSRKGDLNKHMITHTGLKPYSCDICSKSFSLKYNLITHKRIHTGEKPFVCDVCGKAFTQKCNLNIHMLIHAGVKPYSCDLCNMSFTQKSSLNTHLRTHAGVKPYACDLCGKSFALRQTLSRHHKTHTGVKAFACDFCDKTFFANQHLKRHRLTHS,24.00786399231911
|
48 |
+
MRITKGFTLIELMIVVAIIGILAAFAVPAYNDYIARSQAAEGLTLADGLKVRISDHLEAGTCTADNTAVNGKTIGTEGTVGALPEGVSGDCKLSVAFTAGAAGKEITVKYDHKAGALTYQSATGKTISLVLPASLITKAGSWQGSVSWDYLKNLVPTNLRYAYVRSYMGPDYNPNNWPASGSTMPSDICWKSGDPNYTGTPGCTKNNSVAWGYPINPATCTFTPVADPTPTLAPVASVSLNKCYSAGTATLTATAA,24.29027038113483
|
49 |
+
MVGRVGGWIVSVDPDGRFGPKPYKRHRAGIKDALSYLYQLKCRLRIDPDTWREWASPLRESITLEECRYTMPSFAVQASFMTLYWSVCEALFGCRFVYGPFNPILGETYEAHVADSDDEGQKTRYFAEQVSHHPPISACHVDSEKFYLDGHTCIRSKLTGKAISVHHVGQSCLTFKRAGETYLIHMPNQYCRSILTVPWAEQETVHCPTENHSAILEFTKGGFSAKFTGRWSSVLHVISAPHAATAEEKYPVTQVD,24.583101326751542
|
50 |
+
GFHYFDITLAYFIPALLALLSSAWLIRAIRMDRADERAALTARIDELEQHNAALQARVDELERHVAMRTSELLETEQALAAERAALLDKGNHLASNFDTLKQRVAQLESERDALAADRDNLRGERDTLSGQVATLEAQRDEFARQLDAARQQAATAEERARQAEAAAASLRQRLDEALARVTELAGQNSELQAALARERQNNDALNARVRELEEQVARAQAGANQAQAARDRAQADAERLRQLEQQLAGANEAARRRIADLEDQLNRANRTIAEL,25.434296722653517
|
51 |
+
QDTVADETGFFETELTVGTKEDRYSTVFNYRRINRDLKEPQDVNVYYARYEWQVAEDWKLRPGIRLDHDDFFGLTSSPKAYLMYEHDNGDTYKLGVARAYKAPNLYQSNPNYILYSKGQGCYGSSSCYLQGNGDLKAETSVNKELGVEYHHDRFAAALNLFHNDYKDKIVAGISTGVSGNSEMTTANYMEGWMTSVKWDWQIADNWKTDTSISWSRNKPKTSSSLDYQLRPENTLNSTLTWQARENLDFGWRVVHYG,26.433123728733182
|
52 |
+
PPSECPPSPCGEKEYFDVCGQCCKKCKPMEGKISTACRKISDAVCDSGEWVEHPASDKCYACQKTCATRRPTQKACAAMRDCKCLDYFYRQLCVSCIPKCPRACDNQFCTAICNPGCVCPEGLFQDEFTGLCVPESECRTGCSNGQVYRECTSPCPSTCGNPNPRPSCSKTCFDGCACPEGMVLDDQNICVLPEQCGCTLYGRHYKPGETFTSDCGNPCEPTCENAYRTVVCTR,26.468925245048567
|
53 |
+
ENKYSLLYKNQTLFDEWGIKYQVKSRMIEKSLYSVVFNVNDKKYNIIMRLYDKETKRIYSKREIINYIKNNSSINYKIDLIENGEYYAIAMPYIKGCTLRQYINKHISEKDFINILQPLIETLKVLHDKGIYHRDLKPENILIEQDENLFMIDLGLAIDLTNAIPTIDYGTDGFMAPEQALGNKPTFASDIYSLGVIAIELLTLKNPFDSNISLSESNWISTLHKKDKPLSSVLSKLILKMLEPSPNDRPNIKDVLNSLNSLEVLQRGVN,27.369412815985804
|
54 |
+
EKKRKRDAVTWPPEKRQDAILFYLKNHNAPGMEFTEVAKAAGIHKSTVSRELKDPTFPPDASSRAGPGRPKKLSAKADELLNAWIKDTYVEGDLRREVTANILREKALEHGIIELSASTVWRILHKQLGYSSKKMSNRAIAADRRQVQEYRLEVIKAMHDNPYIYLDEIWINQNEAMNHVWFHDSETGLRSTMGLNKGSRGKRIIGVIDAEGFLHYEFKSTTDSTAAKTIVDFLEHNEGDNYLIVVDNAKYHSRL,29.60231093300791
|
55 |
+
MVLFRATLVLTLFCVQLALAQVGINTSTPKATLDITAKTTDGSKPEGLLIPRVDRQQAETIPANPQLTIYTDGKTGKGFFYLGTTTPAGTANILDISKNGYYFYNGTAWVALNSGTYGSGTSGTPSATTDKEIYTNSTDKKVGFYSPTGTLVGYNSLTTTDYNSLITSGVTPSYAIGTSNTAALSSFYTGSVSGTLVTTGLTPVIGAAATNIYTVLDGGTSSTITIGSGGTVTSVTPIGGVTSVSLPLSGVSAVSITGSGSTITMGSGGVVTSVTAPSSVSTISITPTSGSIT,29.77388588380658
|
56 |
+
LATLRQLWAGTFRRLWRAGDRDPDPAKVPLRARLVLMAALPVLALVLSAALTWQAASEQVRSATDRTLLGEVAEIGRTVSTAYGDVDTRLRGQLDGLARIPGVRSAAVVPLGAEGGTTVLGERTVPAADRSRWFSSLPLRSGSPDTVVSAPVLRGDRVLGSVQVVLDTDRVNALVSGLGWVLLLDWLAVTLLLWAAAMVLLRRQLRPLARMTAVAGAVAGGDLSRRVPDPGPDEVAQLGRAFNTMLDRIEQLLAGQRALLDDVSGELNARTVEL,30.911742604776983
|
57 |
+
LSSSCFPWSLGVSVMTFISLSLLSYGPDRPLCPLTPTLSSLQFLVGTWKMVEGSGMFQEFCNHSASQWTFTADGHMTSKAFYVQPQQGQQLRCEEMRLIAQKHHPDTHRCRSLGQPPDTPYHYEYRRDCQDPLTMQHYVTEVMSRRLILSRQKPWDPAPDHIPPGTKIRYVSSPWGPEFCEPVPTQGEAVTLHGTVTHHTLGPLWGEGNHTALTDGFPEGVSPDVFLSAWGPKGLEKLNSLAR,32.019316129846914
|
58 |
+
SPLQIVRDHFIREGRLIDPPEREFVPNDMPEYVLPSGERLPPIDVAKSRHRAVMPPPPSDYMAEYMAYADIMAPVTYYTRKDLGLGTKTILVAGAIGGLCGFLWFFMYVKGMGVLDALGITPFQIVRGDFSDTMSMANGFHMFFMITCGICFGGWATNWSRKAGFSDSMEASLMSAVVAYVLMVPMMMGATHTEMLANGHLMDLTHWTVAHLNPFHMMGFFAINVVAGLASIMVFALHLWYALTVRKTFDPEVELKTLKN,33.613951886997285
|
59 |
+
MAYRSLFTSESVSEGHPDKIADQISDAVLDAVIAADQASCGTAKAAVTTGLVTIGGESAMCWVMSDMIRTTLVDIGYSVTAVGDEGGFAPNIQSFHDALKVIGDTIVNTRKAQSDTNVQIGIDVCATSAKVLPTEYMGYEDRGASLIFSHRSGETEDSTIADFCVGVLAADIKQTLPPIVAELGKPARLRAMGQLAPLAEDAAFVGYDWNHTTGFPRFSAGSMSTADALAAADNTADAAAMANTALAEAAMAGDHATAARWSAAVEDLTAQAKAGTITTGKIAEAIRAACL,34.430385572117466
|
60 |
+
SPDVQIHPPKRDPDPWGIKGLSAFLLGGATLWGLAALAIHLAGLVPFPTVELGTADFHMTLPFMAAAAGGFLIAKHQPRDMFGIGMPEDRPLIATGAAVSFALVVIALVLYAVAPGTYTPRAIGLVGSLAVSAGILGVFGAVLGRLRPVRGIGLVPAAILEGIARQPEARGPVLVSMVAGFALGAVGLLAPHHFGLAFGFGAIGGLGAVALAGWTGALVGAPDISGPTAIAAKMQRFYLWATVLPVAAMVVALVAIATPHLNLGIGEGLLLGGMLAGPLCVAA,35.89969391101693
|
61 |
+
SAWNTNLNMDARSAWATYQRQNGEVIGWMPIVNYADTIHDRDFAQAQLIFSTQVSKLWWAEDLGVNAFVVTLSNDLYQLWLNSPDEKADLMKQININAYNINWGVDDGTYADFQVWNIARMLRNDPSTNGKRYFAYGSDAPLIAAYRDQGWETNTVRGYGEYVVLPKAAGTVDNEVAQAAVDNWYSGAIANRLGTMANTGAVVQTGTTDNGIYGYAMTDGKTLYFPRYNTKYYNTDQGGVAHEFGHHVDYAV,39.68959897551875
|
62 |
+
GEKWIMKFDGALNPSNISAVLAGGLIGLAVGLQATFFNVSTTSHVTGVLGGATVVGMATYYKWASPWAISAGTFFSLVLGTYLGSQLVKRLHVYKLPEPIAFFGGSFVMVWLWSWMTTYIYPASHALTPYASHLSYLCAMLLGALGGILGSLITPPLKDTFIASALGIIGGTGFAVSHLTMLNPTIPSTLYAIAYAATGIWGAITATRIARVLNLFEGALVCGAATVFYSFVKVVAPELLPVALASIVCAAGVLYVANLTKVV,45.78566418659657
|
63 |
+
LAPSPKVFFIDDTPIQWGFVIILLLLSSGGLFFDSKLAGIFTSLGIAVGLIGAALTTFADTRKGKVTPEQLDRVNSTLKTFFGWSLISGVLGLAIYAASLNIDGKLAFVDSLFYFTGTGLVTVGFGDIVPTTTAAKILVVVLIVGGIGFAGSMISTVASWIRSQQEKSELDKHTIRAHARNIVICHDDPRVSALCEYLQGYFLVDDKQSTYHVLPMYLDGNSLERRALRKKLFSNRVAKHFAREGSVRDLDAVRRANVAGARAVIVLSKADENID,47.50012378184719
|
64 |
+
GSTDLSTWQTYVQSTAATITSYYQDTASQAQKNQVLANVTQIINQLDSSTKTKAEVDSALTAINKIKAQIAGDAGGGSSTQATIQGVLDNLITKANNLLRQGQTISEVNALISDLNNLVTQAKGQARSDQESVYTKADSALSNLQNQLNQEREVGSNDRYISQTEKDNLIQNVNNYINNEYLWTDGTSNEGQRLTAAKNLISDTLTNDQKRAAQDAINQLIKDANDLLNQARDRAANQGVTQTEKDNAISNVKTVY,51.616257412346954
|
65 |
+
PVPVPVPVRRPSNTQLDSPGHLRTLLDRNHLPPPDTQLSPDNRLLQDNVPGSGRPLPERTRLSPDRRTLQDFPVHGRDLPEVHRDHGLPAPDHIPPGYGGFLTEAQRHKEWFHVSDTHMAPPDGTSYPIARFHVSAGRPGMPAPDRYFAALGGAQGMASHMHGSGMHSSHGMHGSMGMHGMGHGMFGGGAMGPVFFIVAALAIIIAIGVAVAAKAGGGEGA,52.07059943074766
|
66 |
+
APFAICRRCRRRRGLPVCARRRWRRRRGNIWCAVGSGGIWRPCCRCITRITCRLRVSAAWRICCAGCRGRTCCGSFWWSTTCGSRACTARWTPSPWRSTGRCTRGAWTRWWRCARSTATPSPATASTWRAGWRAATPCGSATSTTSSCRCSTAW,52.5490203150644
|
67 |
+
LVLFAPTFNLSDPEGTVFATLVAIATAVGGYVAIPISGIDSIAGGVVSGYAVAKAGQFTNALKTTAMGAAVGEILGEQLYFGGFGPLGIVAGLITAGAIHKWLVMNKVSVNIYDAIGGRRFEVVLAVMIVTGLIMSFFVPAPVGGFIDNAVSKVGQSAAIGFITDSGSTLLANGINPVIAIGFLFAMAGVLIGGFKVASAQMGTLMGAVAFITGAFGFAVHFGANMVGVGALIAGRFTGRAFSDKVNETWPAVTDAVNNRYRTMVNVLAGSVVGAIFGL,52.5972401908542
|
68 |
+
MAAIHPPNLSFLPKPSAIHLFAFWTGSMGCLCPLLLGSQPILWASTALLLGTLQLGMGLKASLYPSPFPSHHLFQTTNYFLSFFLPFSLLSYASFFPSTLFPPGAIVTLTGLTLHGVSAYTLGGATGAWINYNTNHIFTAENGTVTGIKEMDTYSMVTANRFWSQVFQILFWCTNALALATHFSRIWTISRAEKHQLHVEEEHHHTAAEMVLAENIGIKTLTDYDDDDKMISYYRKDGVHHMHVEDAELALKLQEEEDLKNKKN,52.98995197391265
|
69 |
+
GLFAVIVEIPFSLRLPSVVQAKGSFSDSLFSHSAYPVVQPYFSPETLFGFDILLPITGEPVSRGLYTGHQPLLVVGVETSFLLTVETRLTGEVYSKGGRNSWDIQNCNFFGSDGKKYSLPAFERKKVKDVKCVDQDGVFSEVILERTHTSFTLKYTLPDSEWLIHSRSQLVKREDSNMGRPRKHLSSLVARNSSFEATYQRVSEKETEVSVQFGFSVGWKVIYLFLVKHFPFVFHWISNVLFYLLLNTLFAYIPDFSTFDCLAFLVTL,53.005620188296234
|
70 |
+
LTPRQRMWYGILSTAVFLLASEGSFFAISLTALVSYAYYQSILAQTQPAAAPAISAGFAFMLGVVIFGWVVLGVIQALINAISEWIRALVINIYSRTVFAPYVRALSHTPEGVRVINLQSSQLAGLFVNEFVKGFVDGLALIASLLVSLLISLWMGGVLGLIVFLYFCFRVMRQVGENMGRLREAQGQMYEQTLGLVEGLKDIRAARREEVYKGRIESLFGELAGMEVAGAKVQAVSTLMMRVVTQVAYLCMLWVGAYGVFHGDLS,56.40990415587325
|
71 |
+
MNINQLVLKAREENKQHENFQQGRLNLRYQEISKIEYLNRCRKLAINGNRIQRINDLQFFYHLTYLDLSNNLITSIENLHCLPLLRNLNLQKNLIGHITGLETLVRLEYLNLSHNQISKLENLECLVNLERLDVSHNHLTKIEGVCFLKSNILKELNLESNLLQELKFCEHLDYVTISNNNISSFSQVCYLLEHMPRLKYLSFTGNPYEQKLKQYRMVVFSKLQYLDGFVITEEELCRGSEVVDWIDSGSEFQRFRYCVINFLKDENNRT,58.18325968813114
|
72 |
+
GWVRQLPVYKRFAPFLSKFTLVTSLIAVGAGSGATYIQNLRKPRVRDKIVVHTVPLTPEMSGGKRFSVAPPSGIPHASHRMIPIERQREEDAXRERALRKKMLRRTAMLASGAFCLVLFVALGATIGTLRSEGVLKKDEFIPRPAIVGADGKAYDMDHPYAPPVKYQVQWEPKMGEKYYFHDYAKHHPNDNPENPYNKVAARA,60.55516244953947
|
73 |
+
MSASLFQTQGNYLVAAAISLSGLFMLVGLLAGSPRRPTYRWLLASVTLFCVAVSYFFMLSATTLEQGLVVKTNTGERALVDAVNGSVQYADGHYEIEATLRNLGSQPVRVEISRLQVVGEKMFGDIQSRTVEVGPNETRQVKFLLNRVLTSSANFRDRVLFVITDAQGNRQFIEVPVAYQYAQITGLLIALAWLAVIVIGFPVAWRSRMRIASGNRPVASGPQIAYLTALLFAATWTLVLMIAGTQIIGSQAGL,60.895889009456674
|
74 |
+
AQTTLNVADNSGARQLMCIRVIGASGNCSFVNQQKCTGICGCTRNATPIESEEIFDCIMKCGGQPGDCEVFQTHQCQQRMANNAHHYRRHWLSHTDFCVLPEHFHLDQDRHFHFQQHHHNWHHGHRHHHHHHDFHFGKFFETFAAPFASIFGGHIHGGFEKFSEMLANGFGGFDMFFGGFGGHGHFGGYEQEATSFKILASVVAAILLIAIAIPLGWLVKSQVSGIKVITTTTSGANQIILMKTVVAIATILAIAIAIPTG,62.10915337352313
|
75 |
+
GKRKAAVSRAAKLAATRAVPFARAAAIGPYAAIAIAGTKMAIDDHYKKDREKNREFVFNQWMSRKQLYDYKRKFWMFGPEKMKQLYEESGAKGAEAFFKENAETFKKIRDEYLVDLKNGTANPLTGEKVPLNPALPEDIRFPKYTPPPGLVPEGENPYYIPPPGYVREAERAGMPPPKKREMRMRPAGSEPGTTFGGAGYNPFAADPEYPHTAYAXXXXXXXXXXXXXXXXXXXXXXXXXXXXKRKAALSRTARLVATRAIPFGRSAAIGPYAMTAVAVAKMAYKDD,62.61105811999597
|
76 |
+
GWVRQLPAEERPVVLDRDEIELDPPVIGMGRNLAIMAVSVFLFMILTAWFALGEIQESEIARGTLRADRTLLDRTFIPITERGVFTTLDSRWALADVEPGELVWIAVDKHPATLQPGQSVQVYVRAVNDKPDNSVITPYRAVFAEIEREGFRWIVSVDQERFDQFRAHVTESLRLVNRGEALVGADGAPIPTIDLEATPGLAPDIPVTLRFEAEDIDWRILDQSQVQVARANVASADVSQPGWQEVELTAVAPWQAGKT,66.68297956107664
|
77 |
+
GWTLHPVSLYFSNHLGYVRLYQLWLTSVDKKSTNAFYHEVSDSQRKLVKRITRMELCFLGVMTLISLASLAIYAKFDQTSLPMLNKVFPRQNDIVTPVKFSLSASFFVFFLLLACFLSHAVNQVAKLASFCSALEDIQEFYVRIREELDSLRSYVENLEKRSAVSEEKLRLQASQTEMLLKRLPSFSSFCLLTLDRPILLSSHCPSLLPTVKGILNRGYKLSVYDPPPFQLGLCKDTHISDTQIYYNNGSRLEGATFHL,71.44388492712908
|
78 |
+
ALVPSDVSDQAEATLAFARQNLAKIEPEKIEIKQEPASGVNPADQPSQLDIYLTCTLKNEIRAPPGTTMPQLNFLRNQLEKNLLVPASQRDAYIQANPQQTLILDQPSPLTPEQKEDLAQLTITYGKNNLEVNTQRWPLPSLQVAMQTLESGEAHLEYRIHALPKAAGQPPVPVLKLVSKTTLPATAPVPNTASPTLSVRLPPRRTPPPPPIADEDLDDSPIVRDSRTLLKILLPTVLALVIALIAWRLWSSFTSHRIEAIATVPLPSATATPTP,72.99576740691371
|
79 |
+
MATPSFVSEPFAGLTPRQRQAIAAAMRSSLGYVQESVALNRMYSSALQGLVKPAGNAATIVASTGNVGTALSTLSGIQTAFSQYLKGKGSLVGSATNTLIAAQGKLISDLGSLITQEKTFMDSISKKLISDMDIAVSRTQTINSEVTKLTQERNALVAQLEAARKDADSAQKATITTELSNIIGTVAGAFLTAGFTAGIVLSIWELWAWGATLAAIAVGVGILLIIYATSRSSASNRKAELDAANSNLQNAQSTLKSDQQ,76.45022543295501
|
80 |
+
TPGLIDKLLGGGVQLPPGLLMALAVLAIQLGFIALIGKRVQFGAVARRYKIDAPETSLITAVLLGLAGYLAIFFAMRGMPWSATGELRWISGPHLNPLTFTAKFAMCALIVVPAAMRGWWAFSGPGADERSRHNARYAFWGSIVAVTALVVEGFLIMAPSLTEARFSPFYYARLLTYFVVTTALLVWTTVRESETPGRTLMGFALFSAAMVGLEMLSFTRFAVQFPTWWNVEVANLMYFGTMMIVLGLFFAMGGNIRWMVAA,77.96717901193621
|
81 |
+
MRYFKIRSTTLLIYLAAISVCALSICAPGFITPDEPAHFNYIRYLADHGQLPRIDPYAYASWGSTLSSLSYEFFAALFSWIPLETARSTVIFFAILNAVIIFATARRIAARYGSTGAFAAAAVFLLSPRVLAQSSFNNYDSLGIALMLAAWIFYEKVLTEKRLLPAVLSAVAVSIALLTNYQGYFIFAAVLLFSLPFPKLFFSRKNILFSAGVLSAAVIAAGLFAVFYKDLFLYSVFDVRLMSVFKMMTHQYPFSDAMTIYGGYFTVLF,81.23947975232642
|
82 |
+
LSPDLVAQLKAKTGVSYKEAKEALEATNGDIVAATIWLHEQARTSTFFFFFFFFNLVVGMGLFGPDRPLWLPGHALRLQPRHGLPGHRAAGLHRPRALPRLRLRPLPRLPRLRQGRPHLRHAPARPLRQPRLLPGDHHGRLLPRPRRLPLRLRLRHPRLLLRHLRLRPVLLPRRPLRALRLPRQPRRPLLPLLRRLLQGHPHRGARLPLRPVRRHLLHLRVRPLLRRLLGLLRARVRPQLLRPAPQRLHRLPRAQARPQGPRDGLLLPGQGPAQG,81.88453571822619
|
83 |
+
VGRINTAVTKVEGLKGVFDTASVFIIMRLILGALPGHDYFWHVATHKVLSTTWYELFSNVFLQVPSFITTFFMGAMLVQTMAQKSPEMQEFLKKGGIIFMTLAWFFFAPSGDYVVMRVISACTALVFIVTSMLEMNHVTPPPDTGLPRPIALCLRAFFYIGFLEWCVQQNFYAMCVLFFFMLGGVFTHYTALFVARYMKFFETFVPPIVHSGFSIAWMMWATQEGFITPMGQEPLLLTVLSVMVFFSVMSMC,86.07420147138896
|
84 |
+
MVYRITTIILVISTLTSFLIMFIPLTFRTFHYVMAFMVLLETSMFMWWYFDMSTSSYWNQERVHYEENGVPEFSLSFWSGLMFQMASVCYTYGKVYLSALRFGDMDHVQGQFIDLSNHFAMKTGLNPNDFKMRWPIQLMHNIINTMVEETEKLNAKQQREGITAEVEGEGRPQTFYEIQMLWHCITIILDELKRCTTVSNAIMTKETVDRMVHLCEKGIIPPDLEDFVFKLVFFTPPFEMILNFAI,92.19736060379442
|
85 |
+
MFSKLSLDAVPFARAPQWQRHLLRVACLISLFSLAYLAIVIAADTTNSIFTVGIGILLAAGVWFYWRDAVREELSHNPLGTRAAGIILGSGLVMLGLQLSAHLTGTWGYVTPTTFRWLAIMALAWPAAFLALRLTRDEEPVSEAMDNFDRAMAIMLVVSLVLWTFSPLLRGAVQHLHWLLFADYCFVVVDVVAVVMIYHMVRFLLAPLRETHPDAAQAIARKADAMVLWLFLWALYPIAYLVPAFVWGFHFPEGSIW,94.53532369154783
|
86 |
+
MVIVAIDRAIKATTILISPLIVIDLISAFIIGFRYQLVHDVIARICFAMVFVYYFALFFEIYYSRHFQGYQSALIKRCFLTLVPWLIYGPLLLLYRPVGDWYFPMTLLAFTIFALLAKRFVIEEETRDVMLEKERRMHFFAMVLFVGAMAIAFALSHFGVLEAFMPYRAFWMRGVTLIYFTSFYLVLLHHYGLREEIAFHKRGEVKPYPAYLAYTVINLTAWAVFFFFTHYAPTSAFARWWAWANFICIPFYAIG,95.44574656037318
|
87 |
+
MLLVFFAVMAGLLYGWWLRGSPKHARVTLGFYFITFFLLALLVWTHLGPSQAWSGFSVTLNRFYFWYLIITANAGAVLSAFGLVHRKTYVPEAERKRISLQFDAVFLILWLASALVCTFVMCEYLRWGWTGTDTLFGNHYLTPVLGPLLFWEWVTGLGLVVFAVLCWIYVRKFHYHDNLTARFAYSLLFVAPLIYLWMWVAGHPYQLAWTQDTAWLQSMGYWNGYPFMNPAHMIAFLGAGALFSLAMVAHGFRSERDGY,99.45883530953378
|
88 |
+
FGKDVVPVAATMVPFFGAIGFVLALRQPHFYPPAILIHGFIAAHFIGLYGENDFGEDFVPYFVAGLFVFWGFVAFILNVYFPPTPQNKRTLREEKYHEQVSVLTQAAIDGQEPQEIEVALGQVQANFDTAKSALEADRLIANQKLRAAVSTAATLIVMTAVIVGVHSQYDLLGLVLAMAAAISTLAGLYVFVGVSRAVLTFFTLRRGKTDEFLADADNFLKRNPVPVAALSALAKGHRDQAVAAAQSAIDNINPNPTTSSSSSTSASSSSSWAFDPLG,100.05271078832499
|
89 |
+
MRCGGTMPSTRSTTTGRCTRGWRRRICGTGTATSWTRPTGCTSRSRTSTTSWAGSPTCRTSRTGSSTPWTCPCTCTWRTRSSRSSCRTSPSWTSRRSTRSSRCTKTCWWTRSSRTTWCISGRCSWRSGSTCTRALSWSTWGRCATRRPTWSARSTSPTRRWSSACTARSGRRWCSTTPTSCTWGSCTPARTTGAWKPCSGSTSSPTPTSRPQARCSSATWSRACPTWRSTSSTRRRTSSAATPSSGPW,101.66820225573242
|
90 |
+
RIHDTILPFLMLGVGAFLSGIATLIEKSPNIMKCLPLLLTIGCCIPFLGWVSPIVLPFFSMKTQTTLSDGAIYGNSSISRVYENGIVEETQYVCGLNIFTSRIEVDGDFLFPKYYAPTNDTELQYVTEIPTSAHGTNPAELNATRKNLLNTLGPRYTLVLTDTDGVVRDYVVGNIPQGSPSPNLRYKGLRLELAVDQLPAYTISPPDGTSAFTFINKHWLIDIPTTLISETMVRKLVKAAGPLGPAYIVITEQSPNPIVATAGQAR,103.31987729217545
|
91 |
+
CRFGTCTVQKLAHQIYQFTDKDKDNVAPRSKISPQGYVNPNNEPTSYISPGHLRTKKSNMIPAKEVTRIDPNIVPNPNVQYPNLPAPYMYSGRAKRRRNLGLLMGRPNENPDNQHEMQDGYESAAYSNSYKGTYGKLTRWTSRWINNHYIDIERKVHFKDGRIFKTRAESSRINPKIGDFKTTKYITRGEKEALGFKIGGRLLLRPSSKLEKNFTVTETRTIRNGYTTTISRTIRWDDLEKCPLGNCAVGDLVTIDVTD,103.52201921223038
|
92 |
+
MWWWRLLVVALLRIGLALEDPARNPCSRVFFEGLTGCQQKVLRAVYPDPSRCLKACSEMKEAANSWGTRYAVATSVLGLEWLAYSWIQDKVACRCRGLSIPPTQKPSLFEKLLHSPLLLQGLQRAAEPVLGFFTQATQALKEAVWSALQWLGGQAGHILAFSRHFAFCLMAFSTLTLLSVCCNWWAIRRRFHQLESVTEQLLRCQQYVLQFRAVSRRHYISWALQLYFAHAFILRACAQLVSVLTTVSNMVSDSFSL,113.06700569292313
|
93 |
+
DPLSIILGILAGLFLIILIVLYFCGPYCTCIKRTGCCGNRWCYRWRCCCRRRRWRRRCCRWRTCYRYRWYSTRVRKCVKVPVVKTYKYRSKCGTCYGYVTRTRKVCCSYSSSSKKVCYTACRKKVYKTRYTYKVKVRNCKPCTKYRTKTVCSKCSYKTKIRTRTYKVRVAKCPRKSYKVVTMCKKKPSYRTCSRTSRRSRKVCLTCGSKAYRTKRTIKVPVKKTCSRKVSYKVCARTSHRTH,118.16791808043538
|
94 |
+
MQTYNNPEVTYFDRSQTDVEYGWWSGNSAWKNEQWLVMTKEEAKEFFRRSWIKLLDAFLPTTYIIVRWYQMYNYGCPLWCEKNDGKAHCKDWDYHPTCGKGPWWANNPLPTVKGQCEVYTTHRAGSSKECRSYYDLTSAQKAALQSSDCKATTGVYPFYSQAGTCRLNADYPLEKIPEGICNVHLNHKTRASHWGDPDIPTSQIWYFAAYDQAEKEWRTLSGTLEHTWVALSHEDYQRLVDIESKVPWSVSP,119.47290840438525
|
95 |
+
VQHFTGYVEDGRGIFYSLPMTNKGLDRIMLCIAVIVAFGMLLCPLASLYFSSEPVLVREDIFSALRTLSIFAAVWQIADVLRRTYVVVSKNPLLLLGLALELTFYTVYFGLDKLYPYPLAVFLPLQFGGILLRHITSIYLQAVSSRNESIIAQLRREREREARRTRERNIAQKRRIDAALWRQMSAVVIFLLLWLIAFTSSALALYNNLLASQQLSIAGLTPSQAASLNTGELLLRVIYGLVISCSAVLFTMTVEARDKIMHD,126.04829832003558
|
96 |
+
MLARFFRRQRTASFSLATVVALSALALHTSGMHRPALYASATAVHAITLITLGVMYARSMAPRAEGADHDLRHFMTAYLVTALAWPLAMVLTFALTHFLPGTDPLVPDRTLRLVTLINLAFMASATAHFAFALHTGWNVPRAIAATIVVFALVALTAWLIEIFTGGSTHWSFWAVLIASAAIWLGLALYFRRHAAAIAAFERRHNAQILARFIAAQDETHEQAGGGARSLAHNLDSPLTAAALFADDLSGKVDAPVREHLRLIRRSAND,146.856677830673
|
97 |
+
GWFDAMLASVSEFAPIFVVLIIFIVRVYKPFGSEWIVHVLHIADKRPGLNALIHRLLPRTAVHVPQAVKDKYVFLNSEHCIQFGCRHDPVPQYLELLSKGTYSLKVDVWFKHDRAREFYNMLLNEAQTASENHHASKIRHWTDEKMSELFAMAKKAYIPLNETREHSHDKAHSHNHAHSHNHSHDHGHSHEHTHGHDGVHAHDHSNTSDAHVHSHKHLHLHVHVHDKKNIIRRMNSALRKMKAAGVNTHEVAHVHDETTP,166.7331315912073
|
98 |
+
GAPPITGEALEKDISRREKGVGGFLSRLFSLVNSTNPFAVGVEGEKLLEEIENIRDSMGHQTAAQLYFAQQQSLLQAEYARWQESHNATLQATKDHIFNAQLGHILMLAGAVVCYTAGLRAWAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXFLAITNTAINTYFGGSITQSLEQVSAAVEHAKKVGLLSQETVGQIEAAYNSATGKALSYNNIADTEAAFQEFSRNHVLRSQLDKENADAAWTRVQSEGASLRAYLDHASRAITSALNGAIFAFGGP,169.6224292611664
|
99 |
+
MSAMSVQIDRLQDQLNHLGELVAQNSKVIAALTQRIQVLERIVTERLRIPYIPLEKRTALMFPLHDEEKQSEITLFINAELHLGTAPGKHKVYYTTVEEMIQHFKEGKCLPQNWPQSDNPFWPCYRELADEMKSNTAAYNNFIKMQDEMRKLCIMLSSGVYHISRNPGGAKDLYTDPKLFIQIYTNECLRNAIPAEILDQMIIDLYANYTEADIHNMAEVRASRNFNHLEKQYMHKLLKLKKTLPFAIQASMDVVL,187.47480920419864
|
100 |
+
AAGVAAWLPFARAAAIGWMPVASTAPRAMTATASWPIWMIWAMAMPAMTGRRWRRSRWATAPMARSSGAAPMMARPVMTAMPVAAATIRPSALRSISATASATAGSASAMTRSAAMSPIRTIWRRCSRARRAVASGAWSAISATSSARRRTTSTARALSCAAMASGLPSASMKAAAGGGSSNTMPRCSGSSASRTRACGTASPSCCRAATAASASARAARARSCRASSRARSAIWRAMSVRSRTWSRSARLRRSTSRPSMRSATAA,216.8557544805602
|
101 |
+
EKKEVCSVFLTNRVPLDDKRFRRERVYLPGESPFIDPDLFLSREHPLRAQVRGTIIEWLRASIYGIYPYPEQRDPNLWCTERFKQEVMPDGHCEPTLGFVPLTFSTCLTRDMIAASSYNWRKTMEVPGAKMLLHVGPLGTGGHYDYAFTFLQPDNTFAYVKGNKLVRQTKIWNDAGFQLVTEEATLLDAQEYFGAANKLGVCIFCGNCVEYCPTNCLSMCEEVLPRGNALQESWTILERVFMPEDPEHENFKYRRLRTSDGAKFINYTS,520.388790480398
|
benchmarks/Generation/ProtGPT2/protgpt2_test.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/Generation/ProtGPT2/protgpt2_train.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/Generation/ProtGPT2/run_clm.py
ADDED
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
|
18 |
+
|
19 |
+
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
20 |
+
https://huggingface.co/models?filter=text-generation
|
21 |
+
"""
|
22 |
+
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
23 |
+
|
24 |
+
import logging
|
25 |
+
import math
|
26 |
+
import os
|
27 |
+
import sys
|
28 |
+
from dataclasses import dataclass, field
|
29 |
+
from itertools import chain
|
30 |
+
from typing import Optional
|
31 |
+
|
32 |
+
import datasets
|
33 |
+
import evaluate
|
34 |
+
import torch
|
35 |
+
from datasets import load_dataset
|
36 |
+
|
37 |
+
import transformers
|
38 |
+
from transformers import (
|
39 |
+
CONFIG_MAPPING,
|
40 |
+
MODEL_FOR_CAUSAL_LM_MAPPING,
|
41 |
+
AutoConfig,
|
42 |
+
AutoModelForCausalLM,
|
43 |
+
AutoTokenizer,
|
44 |
+
HfArgumentParser,
|
45 |
+
Trainer,
|
46 |
+
TrainingArguments,
|
47 |
+
default_data_collator,
|
48 |
+
is_torch_xla_available,
|
49 |
+
set_seed,
|
50 |
+
)
|
51 |
+
from transformers.testing_utils import CaptureLogger
|
52 |
+
from transformers.trainer_utils import get_last_checkpoint
|
53 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
54 |
+
from transformers.utils.versions import require_version
|
55 |
+
|
56 |
+
|
57 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
58 |
+
check_min_version("4.45.0.dev0")
|
59 |
+
|
60 |
+
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
61 |
+
|
62 |
+
logger = logging.getLogger(__name__)
|
63 |
+
|
64 |
+
|
65 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
66 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class ModelArguments:
|
71 |
+
"""
|
72 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
73 |
+
"""
|
74 |
+
|
75 |
+
model_name_or_path: Optional[str] = field(
|
76 |
+
default=None,
|
77 |
+
metadata={
|
78 |
+
"help": (
|
79 |
+
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
|
80 |
+
)
|
81 |
+
},
|
82 |
+
)
|
83 |
+
model_type: Optional[str] = field(
|
84 |
+
default=None,
|
85 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
86 |
+
)
|
87 |
+
config_overrides: Optional[str] = field(
|
88 |
+
default=None,
|
89 |
+
metadata={
|
90 |
+
"help": (
|
91 |
+
"Override some existing default config settings when a model is trained from scratch. Example: "
|
92 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
93 |
+
)
|
94 |
+
},
|
95 |
+
)
|
96 |
+
config_name: Optional[str] = field(
|
97 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
98 |
+
)
|
99 |
+
tokenizer_name: Optional[str] = field(
|
100 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
101 |
+
)
|
102 |
+
cache_dir: Optional[str] = field(
|
103 |
+
default=None,
|
104 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
105 |
+
)
|
106 |
+
use_fast_tokenizer: bool = field(
|
107 |
+
default=True,
|
108 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
109 |
+
)
|
110 |
+
model_revision: str = field(
|
111 |
+
default="main",
|
112 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
113 |
+
)
|
114 |
+
token: str = field(
|
115 |
+
default=None,
|
116 |
+
metadata={
|
117 |
+
"help": (
|
118 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
119 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
120 |
+
)
|
121 |
+
},
|
122 |
+
)
|
123 |
+
trust_remote_code: bool = field(
|
124 |
+
default=False,
|
125 |
+
metadata={
|
126 |
+
"help": (
|
127 |
+
"Whether to trust the execution of code from datasets/models defined on the Hub."
|
128 |
+
" This option should only be set to `True` for repositories you trust and in which you have read the"
|
129 |
+
" code, as it will execute code present on the Hub on your local machine."
|
130 |
+
)
|
131 |
+
},
|
132 |
+
)
|
133 |
+
torch_dtype: Optional[str] = field(
|
134 |
+
default=None,
|
135 |
+
metadata={
|
136 |
+
"help": (
|
137 |
+
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
|
138 |
+
"dtype will be automatically derived from the model's weights."
|
139 |
+
),
|
140 |
+
"choices": ["auto", "bfloat16", "float16", "float32"],
|
141 |
+
},
|
142 |
+
)
|
143 |
+
low_cpu_mem_usage: bool = field(
|
144 |
+
default=False,
|
145 |
+
metadata={
|
146 |
+
"help": (
|
147 |
+
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
|
148 |
+
"set True will benefit LLM loading time and RAM consumption."
|
149 |
+
)
|
150 |
+
},
|
151 |
+
)
|
152 |
+
|
153 |
+
def __post_init__(self):
|
154 |
+
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
155 |
+
raise ValueError(
|
156 |
+
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
@dataclass
|
161 |
+
class DataTrainingArguments:
|
162 |
+
"""
|
163 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
164 |
+
"""
|
165 |
+
|
166 |
+
dataset_name: Optional[str] = field(
|
167 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
168 |
+
)
|
169 |
+
dataset_config_name: Optional[str] = field(
|
170 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
171 |
+
)
|
172 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
173 |
+
validation_file: Optional[str] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
176 |
+
)
|
177 |
+
max_train_samples: Optional[int] = field(
|
178 |
+
default=None,
|
179 |
+
metadata={
|
180 |
+
"help": (
|
181 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
182 |
+
"value if set."
|
183 |
+
)
|
184 |
+
},
|
185 |
+
)
|
186 |
+
max_eval_samples: Optional[int] = field(
|
187 |
+
default=None,
|
188 |
+
metadata={
|
189 |
+
"help": (
|
190 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
191 |
+
"value if set."
|
192 |
+
)
|
193 |
+
},
|
194 |
+
)
|
195 |
+
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
|
196 |
+
block_size: Optional[int] = field(
|
197 |
+
default=None,
|
198 |
+
metadata={
|
199 |
+
"help": (
|
200 |
+
"Optional input sequence length after tokenization. "
|
201 |
+
"The training dataset will be truncated in block of this size for training. "
|
202 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
203 |
+
)
|
204 |
+
},
|
205 |
+
)
|
206 |
+
overwrite_cache: bool = field(
|
207 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
208 |
+
)
|
209 |
+
validation_split_percentage: Optional[int] = field(
|
210 |
+
default=5,
|
211 |
+
metadata={
|
212 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
213 |
+
},
|
214 |
+
)
|
215 |
+
preprocessing_num_workers: Optional[int] = field(
|
216 |
+
default=None,
|
217 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
218 |
+
)
|
219 |
+
keep_linebreaks: bool = field(
|
220 |
+
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
|
221 |
+
)
|
222 |
+
|
223 |
+
def __post_init__(self):
|
224 |
+
if self.streaming:
|
225 |
+
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
|
226 |
+
|
227 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
228 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
229 |
+
else:
|
230 |
+
if self.train_file is not None:
|
231 |
+
extension = self.train_file.split(".")[-1]
|
232 |
+
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
233 |
+
if self.validation_file is not None:
|
234 |
+
extension = self.validation_file.split(".")[-1]
|
235 |
+
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
236 |
+
|
237 |
+
|
238 |
+
def main():
|
239 |
+
# See all possible arguments in src/transformers/training_args.py
|
240 |
+
# or by passing the --help flag to this script.
|
241 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
242 |
+
|
243 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
244 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
245 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
246 |
+
# let's parse it to get our arguments.
|
247 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
248 |
+
else:
|
249 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
250 |
+
|
251 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
252 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
253 |
+
send_example_telemetry("run_clm", model_args, data_args)
|
254 |
+
|
255 |
+
# Setup logging
|
256 |
+
logging.basicConfig(
|
257 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
258 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
259 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
260 |
+
)
|
261 |
+
|
262 |
+
if training_args.should_log:
|
263 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
264 |
+
transformers.utils.logging.set_verbosity_info()
|
265 |
+
|
266 |
+
log_level = training_args.get_process_log_level()
|
267 |
+
logger.setLevel(log_level)
|
268 |
+
datasets.utils.logging.set_verbosity(log_level)
|
269 |
+
transformers.utils.logging.set_verbosity(log_level)
|
270 |
+
transformers.utils.logging.enable_default_handler()
|
271 |
+
transformers.utils.logging.enable_explicit_format()
|
272 |
+
|
273 |
+
# Log on each process the small summary:
|
274 |
+
logger.warning(
|
275 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
276 |
+
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
277 |
+
)
|
278 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
279 |
+
|
280 |
+
# Detecting last checkpoint.
|
281 |
+
last_checkpoint = None
|
282 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
283 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
284 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
285 |
+
raise ValueError(
|
286 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
287 |
+
"Use --overwrite_output_dir to overcome."
|
288 |
+
)
|
289 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
290 |
+
logger.info(
|
291 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
292 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
293 |
+
)
|
294 |
+
|
295 |
+
# Set seed before initializing model.
|
296 |
+
set_seed(training_args.seed)
|
297 |
+
|
298 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
299 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
300 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
301 |
+
#
|
302 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
303 |
+
# 'text' is found. You can easily tweak this behavior (see below).
|
304 |
+
#
|
305 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
306 |
+
# download the dataset.
|
307 |
+
if data_args.dataset_name is not None:
|
308 |
+
# Downloading and loading a dataset from the hub.
|
309 |
+
raw_datasets = load_dataset(
|
310 |
+
data_args.dataset_name,
|
311 |
+
data_args.dataset_config_name,
|
312 |
+
cache_dir=model_args.cache_dir,
|
313 |
+
token=model_args.token,
|
314 |
+
streaming=data_args.streaming,
|
315 |
+
trust_remote_code=model_args.trust_remote_code,
|
316 |
+
)
|
317 |
+
if "validation" not in raw_datasets.keys():
|
318 |
+
raw_datasets["validation"] = load_dataset(
|
319 |
+
data_args.dataset_name,
|
320 |
+
data_args.dataset_config_name,
|
321 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
322 |
+
cache_dir=model_args.cache_dir,
|
323 |
+
token=model_args.token,
|
324 |
+
streaming=data_args.streaming,
|
325 |
+
trust_remote_code=model_args.trust_remote_code,
|
326 |
+
)
|
327 |
+
raw_datasets["train"] = load_dataset(
|
328 |
+
data_args.dataset_name,
|
329 |
+
data_args.dataset_config_name,
|
330 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
331 |
+
cache_dir=model_args.cache_dir,
|
332 |
+
token=model_args.token,
|
333 |
+
streaming=data_args.streaming,
|
334 |
+
trust_remote_code=model_args.trust_remote_code,
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
data_files = {}
|
338 |
+
dataset_args = {}
|
339 |
+
if data_args.train_file is not None:
|
340 |
+
data_files["train"] = data_args.train_file
|
341 |
+
if data_args.validation_file is not None:
|
342 |
+
data_files["validation"] = data_args.validation_file
|
343 |
+
extension = (
|
344 |
+
data_args.train_file.split(".")[-1]
|
345 |
+
if data_args.train_file is not None
|
346 |
+
else data_args.validation_file.split(".")[-1]
|
347 |
+
)
|
348 |
+
if extension == "txt":
|
349 |
+
extension = "text"
|
350 |
+
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
|
351 |
+
raw_datasets = load_dataset(
|
352 |
+
extension,
|
353 |
+
data_files=data_files,
|
354 |
+
cache_dir=model_args.cache_dir,
|
355 |
+
token=model_args.token,
|
356 |
+
**dataset_args,
|
357 |
+
)
|
358 |
+
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
359 |
+
if "validation" not in raw_datasets.keys():
|
360 |
+
raw_datasets["validation"] = load_dataset(
|
361 |
+
extension,
|
362 |
+
data_files=data_files,
|
363 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
364 |
+
cache_dir=model_args.cache_dir,
|
365 |
+
token=model_args.token,
|
366 |
+
**dataset_args,
|
367 |
+
)
|
368 |
+
raw_datasets["train"] = load_dataset(
|
369 |
+
extension,
|
370 |
+
data_files=data_files,
|
371 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
372 |
+
cache_dir=model_args.cache_dir,
|
373 |
+
token=model_args.token,
|
374 |
+
**dataset_args,
|
375 |
+
)
|
376 |
+
|
377 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
378 |
+
# https://huggingface.co/docs/datasets/loading_datasets.
|
379 |
+
|
380 |
+
# Load pretrained model and tokenizer
|
381 |
+
#
|
382 |
+
# Distributed training:
|
383 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
384 |
+
# download model & vocab.
|
385 |
+
|
386 |
+
config_kwargs = {
|
387 |
+
"cache_dir": model_args.cache_dir,
|
388 |
+
"revision": model_args.model_revision,
|
389 |
+
"token": model_args.token,
|
390 |
+
"trust_remote_code": model_args.trust_remote_code,
|
391 |
+
}
|
392 |
+
if model_args.config_name:
|
393 |
+
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
394 |
+
elif model_args.model_name_or_path:
|
395 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
396 |
+
else:
|
397 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
398 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
399 |
+
if model_args.config_overrides is not None:
|
400 |
+
logger.info(f"Overriding config: {model_args.config_overrides}")
|
401 |
+
config.update_from_string(model_args.config_overrides)
|
402 |
+
logger.info(f"New config: {config}")
|
403 |
+
|
404 |
+
tokenizer_kwargs = {
|
405 |
+
"cache_dir": model_args.cache_dir,
|
406 |
+
"use_fast": model_args.use_fast_tokenizer,
|
407 |
+
"revision": model_args.model_revision,
|
408 |
+
"token": model_args.token,
|
409 |
+
"trust_remote_code": model_args.trust_remote_code,
|
410 |
+
}
|
411 |
+
if model_args.tokenizer_name:
|
412 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
413 |
+
elif model_args.model_name_or_path:
|
414 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
415 |
+
else:
|
416 |
+
raise ValueError(
|
417 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
418 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
419 |
+
)
|
420 |
+
|
421 |
+
if model_args.model_name_or_path:
|
422 |
+
torch_dtype = (
|
423 |
+
model_args.torch_dtype
|
424 |
+
if model_args.torch_dtype in ["auto", None]
|
425 |
+
else getattr(torch, model_args.torch_dtype)
|
426 |
+
)
|
427 |
+
model = AutoModelForCausalLM.from_pretrained(
|
428 |
+
model_args.model_name_or_path,
|
429 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
430 |
+
config=config,
|
431 |
+
cache_dir=model_args.cache_dir,
|
432 |
+
revision=model_args.model_revision,
|
433 |
+
token=model_args.token,
|
434 |
+
trust_remote_code=model_args.trust_remote_code,
|
435 |
+
torch_dtype=torch_dtype,
|
436 |
+
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
|
437 |
+
)
|
438 |
+
else:
|
439 |
+
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
|
440 |
+
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
|
441 |
+
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
|
442 |
+
|
443 |
+
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
444 |
+
# on a small vocab and want a smaller embedding size, remove this test.
|
445 |
+
embedding_size = model.get_input_embeddings().weight.shape[0]
|
446 |
+
if len(tokenizer) > embedding_size:
|
447 |
+
model.resize_token_embeddings(len(tokenizer))
|
448 |
+
|
449 |
+
# Preprocessing the datasets.
|
450 |
+
# First we tokenize all the texts.
|
451 |
+
if training_args.do_train:
|
452 |
+
column_names = list(raw_datasets["train"].features)
|
453 |
+
else:
|
454 |
+
column_names = list(raw_datasets["validation"].features)
|
455 |
+
text_column_name = "text" if "text" in column_names else column_names[0]
|
456 |
+
|
457 |
+
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
458 |
+
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
459 |
+
|
460 |
+
def tokenize_function(examples):
|
461 |
+
with CaptureLogger(tok_logger) as cl:
|
462 |
+
output = tokenizer(examples[text_column_name])
|
463 |
+
# clm input could be much much longer than block_size
|
464 |
+
if "Token indices sequence length is longer than the" in cl.out:
|
465 |
+
tok_logger.warning(
|
466 |
+
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
|
467 |
+
" before being passed to the model."
|
468 |
+
)
|
469 |
+
return output
|
470 |
+
|
471 |
+
with training_args.main_process_first(desc="dataset map tokenization"):
|
472 |
+
if not data_args.streaming:
|
473 |
+
tokenized_datasets = raw_datasets.map(
|
474 |
+
tokenize_function,
|
475 |
+
batched=True,
|
476 |
+
num_proc=data_args.preprocessing_num_workers,
|
477 |
+
remove_columns=column_names,
|
478 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
479 |
+
desc="Running tokenizer on dataset",
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
tokenized_datasets = raw_datasets.map(
|
483 |
+
tokenize_function,
|
484 |
+
batched=True,
|
485 |
+
remove_columns=column_names,
|
486 |
+
)
|
487 |
+
if hasattr(config, "max_position_embeddings"):
|
488 |
+
max_pos_embeddings = config.max_position_embeddings
|
489 |
+
else:
|
490 |
+
# Define a default value if the attribute is missing in the config.
|
491 |
+
max_pos_embeddings = 1024
|
492 |
+
|
493 |
+
if data_args.block_size is None:
|
494 |
+
block_size = tokenizer.model_max_length
|
495 |
+
if block_size > max_pos_embeddings:
|
496 |
+
logger.warning(
|
497 |
+
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
498 |
+
f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
|
499 |
+
)
|
500 |
+
if max_pos_embeddings > 0:
|
501 |
+
block_size = min(1024, max_pos_embeddings)
|
502 |
+
else:
|
503 |
+
block_size = 1024
|
504 |
+
else:
|
505 |
+
if data_args.block_size > tokenizer.model_max_length:
|
506 |
+
logger.warning(
|
507 |
+
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
|
508 |
+
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
|
509 |
+
)
|
510 |
+
block_size = min(data_args.block_size, tokenizer.model_max_length)
|
511 |
+
|
512 |
+
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
513 |
+
def group_texts(examples):
|
514 |
+
# Concatenate all texts.
|
515 |
+
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
516 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
517 |
+
# We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
|
518 |
+
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
|
519 |
+
total_length = (total_length // block_size) * block_size
|
520 |
+
# Split by chunks of max_len.
|
521 |
+
result = {
|
522 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
523 |
+
for k, t in concatenated_examples.items()
|
524 |
+
}
|
525 |
+
result["labels"] = result["input_ids"].copy()
|
526 |
+
return result
|
527 |
+
|
528 |
+
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
529 |
+
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
530 |
+
# to preprocess.
|
531 |
+
#
|
532 |
+
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
533 |
+
# https://huggingface.co/docs/datasets/process#map
|
534 |
+
|
535 |
+
with training_args.main_process_first(desc="grouping texts together"):
|
536 |
+
if not data_args.streaming:
|
537 |
+
lm_datasets = tokenized_datasets.map(
|
538 |
+
group_texts,
|
539 |
+
batched=True,
|
540 |
+
num_proc=data_args.preprocessing_num_workers,
|
541 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
542 |
+
desc=f"Grouping texts in chunks of {block_size}",
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
lm_datasets = tokenized_datasets.map(
|
546 |
+
group_texts,
|
547 |
+
batched=True,
|
548 |
+
)
|
549 |
+
|
550 |
+
if training_args.do_train:
|
551 |
+
if "train" not in tokenized_datasets:
|
552 |
+
raise ValueError("--do_train requires a train dataset")
|
553 |
+
train_dataset = lm_datasets["train"]
|
554 |
+
if data_args.max_train_samples is not None:
|
555 |
+
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
556 |
+
train_dataset = train_dataset.select(range(max_train_samples))
|
557 |
+
|
558 |
+
if training_args.do_eval:
|
559 |
+
if "validation" not in tokenized_datasets:
|
560 |
+
raise ValueError("--do_eval requires a validation dataset")
|
561 |
+
eval_dataset = lm_datasets["validation"]
|
562 |
+
if data_args.max_eval_samples is not None:
|
563 |
+
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
564 |
+
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
565 |
+
|
566 |
+
def preprocess_logits_for_metrics(logits, labels):
|
567 |
+
if isinstance(logits, tuple):
|
568 |
+
# Depending on the model and config, logits may contain extra tensors,
|
569 |
+
# like past_key_values, but logits always come first
|
570 |
+
logits = logits[0]
|
571 |
+
return logits.argmax(dim=-1)
|
572 |
+
|
573 |
+
metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
|
574 |
+
|
575 |
+
def compute_metrics(eval_preds):
|
576 |
+
preds, labels = eval_preds
|
577 |
+
# preds have the same shape as the labels, after the argmax(-1) has been calculated
|
578 |
+
# by preprocess_logits_for_metrics but we need to shift the labels
|
579 |
+
labels = labels[:, 1:].reshape(-1)
|
580 |
+
preds = preds[:, :-1].reshape(-1)
|
581 |
+
return metric.compute(predictions=preds, references=labels)
|
582 |
+
|
583 |
+
# Initialize our Trainer
|
584 |
+
trainer = Trainer(
|
585 |
+
model=model,
|
586 |
+
args=training_args,
|
587 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
588 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
589 |
+
tokenizer=tokenizer,
|
590 |
+
# Data collator will default to DataCollatorWithPadding, so we change it.
|
591 |
+
data_collator=default_data_collator,
|
592 |
+
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
|
593 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics
|
594 |
+
if training_args.do_eval and not is_torch_xla_available()
|
595 |
+
else None,
|
596 |
+
)
|
597 |
+
|
598 |
+
# Training
|
599 |
+
if training_args.do_train:
|
600 |
+
checkpoint = None
|
601 |
+
if training_args.resume_from_checkpoint is not None:
|
602 |
+
checkpoint = training_args.resume_from_checkpoint
|
603 |
+
elif last_checkpoint is not None:
|
604 |
+
checkpoint = last_checkpoint
|
605 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
606 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
607 |
+
|
608 |
+
metrics = train_result.metrics
|
609 |
+
|
610 |
+
max_train_samples = (
|
611 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
612 |
+
)
|
613 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
614 |
+
|
615 |
+
trainer.log_metrics("train", metrics)
|
616 |
+
trainer.save_metrics("train", metrics)
|
617 |
+
trainer.save_state()
|
618 |
+
|
619 |
+
# Evaluation
|
620 |
+
if training_args.do_eval:
|
621 |
+
logger.info("*** Evaluate ***")
|
622 |
+
|
623 |
+
metrics = trainer.evaluate()
|
624 |
+
|
625 |
+
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
626 |
+
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
627 |
+
try:
|
628 |
+
perplexity = math.exp(metrics["eval_loss"])
|
629 |
+
except OverflowError:
|
630 |
+
perplexity = float("inf")
|
631 |
+
metrics["perplexity"] = perplexity
|
632 |
+
|
633 |
+
trainer.log_metrics("eval", metrics)
|
634 |
+
trainer.save_metrics("eval", metrics)
|
635 |
+
|
636 |
+
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
|
637 |
+
if data_args.dataset_name is not None:
|
638 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
639 |
+
if data_args.dataset_config_name is not None:
|
640 |
+
kwargs["dataset_args"] = data_args.dataset_config_name
|
641 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
642 |
+
else:
|
643 |
+
kwargs["dataset"] = data_args.dataset_name
|
644 |
+
|
645 |
+
if training_args.push_to_hub:
|
646 |
+
trainer.push_to_hub(**kwargs)
|
647 |
+
else:
|
648 |
+
trainer.create_model_card(**kwargs)
|
649 |
+
|
650 |
+
|
651 |
+
def _mp_fn(index):
|
652 |
+
# For xla_spawn (TPUs)
|
653 |
+
main()
|
654 |
+
|
655 |
+
|
656 |
+
if __name__ == "__main__":
|
657 |
+
main()
|
benchmarks/Generation/Visualize/analyze_mdlm_denovo_gen.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
path = "/home/sg666/MDpLM/benchmarks/Generation"
|
4 |
+
|
5 |
+
res = pd.read_csv(path + "/mdlm_de-novo_generation_results.csv")
|
6 |
+
average_ppl = res['Perplexity'].mean()
|
7 |
+
print(average_ppl)
|
benchmarks/Generation/Visualize/esm_umap.png
ADDED
benchmarks/Generation/Visualize/esm_umap.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from umap import UMAP
|
6 |
+
from sklearn.manifold import TSNE
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
from transformers import AutoModel, AutoTokenizer
|
9 |
+
|
10 |
+
path = "/workspace/sg666/MDpLM/benchmarks/Generation"
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
esm_model_path = "facebook/esm2_t33_650M_UR50D"
|
13 |
+
|
14 |
+
# Loads ESM model and tokenizer to embed the sequences
|
15 |
+
def load_esm2_model(model_name):
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
18 |
+
return tokenizer, model
|
19 |
+
|
20 |
+
def get_latents(model, tokenizer, sequence):
|
21 |
+
inputs = tokenizer(sequence, return_tensors="pt").to(device)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze(0).cpu().numpy().tolist()
|
25 |
+
return embeddings
|
26 |
+
|
27 |
+
# Load a random set of 100 human and reviewed sequences from uniprot
|
28 |
+
def parse_fasta_file(file_path):
|
29 |
+
with open(file_path, 'r') as file:
|
30 |
+
lines = file.readlines()
|
31 |
+
|
32 |
+
sequences = []
|
33 |
+
current_seq = []
|
34 |
+
current_type = "UniProt"
|
35 |
+
|
36 |
+
for line in lines:
|
37 |
+
line = line.strip()
|
38 |
+
if line.startswith('>'):
|
39 |
+
if current_seq:
|
40 |
+
sequences.append(("".join(current_seq), current_type))
|
41 |
+
current_seq = []
|
42 |
+
else:
|
43 |
+
current_seq.append(line)
|
44 |
+
if current_seq:
|
45 |
+
sequences.append(("".join(current_seq), current_type))
|
46 |
+
|
47 |
+
return pd.DataFrame(sequences, columns=["Sequence", "Sequence Source"]).sample(100).reset_index(drop=True)
|
48 |
+
|
49 |
+
|
50 |
+
# Obtain/clean sequences generated from ProtGPT2 fine-tuned on membrane sequences
|
51 |
+
protgpt2_sequences = pd.read_csv(path + "/ProtGPT2/protgpt2_generated_sequences.csv")
|
52 |
+
protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('<|ENDOFTEXT|>', '', regex=False)
|
53 |
+
protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('""', '', regex=False)
|
54 |
+
protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('\n', '', regex=False)
|
55 |
+
protgpt2_sequences['Sequence'] = protgpt2_sequences['Sequence'].str.replace('X', 'G', regex=False)
|
56 |
+
protgpt2_sequences.drop(columns=['Perplexity'], inplace=True)
|
57 |
+
protgpt2_sequences['Sequence Source'] = "ProtGPT2"
|
58 |
+
bad_sequences = []
|
59 |
+
for seq in protgpt2_sequences['Sequence']:
|
60 |
+
for residue in seq:
|
61 |
+
if residue in ['B', 'U', 'Z', 'O']:
|
62 |
+
bad_sequences.append(seq)
|
63 |
+
protgpt2_sequences = protgpt2_sequences[~protgpt2_sequences['Sequence'].isin(bad_sequences)]
|
64 |
+
|
65 |
+
|
66 |
+
# Load MDpLM generated sequences
|
67 |
+
memdlm_sequences = pd.read_csv(path + "/mdlm_de-novo_generation_results.csv")
|
68 |
+
memdlm_sequences.rename(columns={"Generated Sequence": "Sequence"}, inplace=True)
|
69 |
+
memdlm_sequences.drop(columns=['Perplexity'], inplace=True)
|
70 |
+
memdlm_sequences['Sequence Source'] = "MeMDLM"
|
71 |
+
memdlm_sequences.reset_index(drop=True, inplace=True)
|
72 |
+
|
73 |
+
# Load UniProt sequences
|
74 |
+
# fasta_file_path = path + "/uniprot_human_and_reviewed.fasta"
|
75 |
+
# other_sequences = parse_fasta_file(fasta_file_path)
|
76 |
+
|
77 |
+
# Load test set sequences
|
78 |
+
other_sequences = pd.read_csv("/workspace/sg666/MDpLM/data/membrane/test.csv")
|
79 |
+
other_sequences['Sequence Source'] = "Test Set"
|
80 |
+
other_sequences = other_sequences.sample(100)
|
81 |
+
|
82 |
+
# Combine all sequences
|
83 |
+
data = pd.concat([memdlm_sequences, protgpt2_sequences, other_sequences])
|
84 |
+
|
85 |
+
|
86 |
+
# Load ESM model and tokenizer for embeddings
|
87 |
+
tokenizer, model = load_esm2_model(esm_model_path)
|
88 |
+
model = model.to(device)
|
89 |
+
|
90 |
+
|
91 |
+
# Embed the sequences
|
92 |
+
data['Embeddings'] = data['Sequence'].apply(lambda sequence: get_latents(model, tokenizer, sequence))
|
93 |
+
data = data.reset_index(drop=True)
|
94 |
+
umap_df = pd.DataFrame(data['Embeddings'].tolist())
|
95 |
+
umap_df.index = data['Sequence Source']
|
96 |
+
|
97 |
+
|
98 |
+
# Do PCA
|
99 |
+
umap = UMAP(n_components=2)
|
100 |
+
umap_features = umap.fit_transform(umap_df)
|
101 |
+
umap_df['UMAP1'] = umap_features[:, 0]
|
102 |
+
umap_df['UMAP2'] = umap_features[:, 1]
|
103 |
+
|
104 |
+
# Visualize the PCA
|
105 |
+
plt.figure(figsize=(8, 5),dpi=300)
|
106 |
+
sns.scatterplot(x='UMAP1', y='UMAP2', hue='Sequence Source', data=umap_df, palette=['#297272', '#ff7477', "#9A77D0"], s=100)
|
107 |
+
plt.xlabel('UMAP1')
|
108 |
+
plt.ylabel('UMAP2')
|
109 |
+
plt.title(f'ESM-650M Embeddings of Membrane Protein Sequences')
|
110 |
+
plt.savefig('esm_umap.png')
|
111 |
+
plt.show()
|
benchmarks/Generation/Visualize/mdlm_de-novo_generation_results.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Generated Sequence,Perplexity
|
2 |
+
GEGQPTLDAEGMPKADEGKMMTFKSENFTDDSVENLVLTSYGVYNPVIFTDLVIRTPKEGAVVPPTVVLMNGEWTEVMPNLTGAETFDTQSKYLVNGLKRYGVSKKKHVQVYQMARRTKDLLTMIPDGMASADFSFEAPGRANTMPAVGLSMDSAVGQPNLSRLRGVDVFFRYIVYTADPFGSETQNLEVQASERTNILFLNQQKKKVKSGIVVQMQKGILFERFGEVMDGQRPSNQRVGSQDMLIGVGALVKLNQKKIRTRIIQLFNLGYDDSEAIDWLPTTVAYLDSTYYVAMTTIQSIWVTDYYGLQGLFPFNQNKIGKHGVEVKHVQYFLEFVEAYVDQLEDLFTEYNERNSKLSNSNAIQAITIAEYQQLKDQLQLLTTENPIVDSSMIALRIKKLDNSATRELVSQFNRDVERATPNITAAQISVLKDNMTILLQDELMHMSDLNGEAADATYTLQAARESLEQLTTAAEFAPEYLTIEEQDISDFKARMELLKEIVGSLSNRIESAVKNKQDKEGIQYAMYKRPNRIDILIKNINLKFKGIQFQIDSIVAKVRNMEAFIKALVYRLDNVRISLVQRVGNRRHLAKKEKEPETVLIVNLRDYRSTLILFDIMTNLRITDEGQPENILRMKPVLDNADIPTENERIPSLSMPLMVRYTTVVINLPELDEHKAPLGINIVVAKDAVVSRLEWEWEGDVFKNKPYRIKRAGYGPDYVRAGALAQVFIARSDTATQSIAVRKTANEKFLLRLPRLPGSLMGEVVLKSFATFHQAFGTGRNNVYQRDEDSDKKYNQTLIDYWFDLNRFFGLSQREEGVQMMLLVEEPFTAGILSKAIVFDDDKKSAFLMMARAFLVYLPLHHSPDAPLEVANNSPKNIRLNLQATIAARG,18.2131
|
3 |
+
WTTGWGVSQDLIDSASMSPGMIWILLVDSYKERWFGTYWWGTSTCKEGAFPFEDVMQRIELRILKKYFYYLAIISSVLTLLMIIAKLVTNCLSFANIHKSHRYFFCVNCFWFISQLCNDLSAFPVLKKLESATRFVIYPSPVKAVQLDTMPDKIVLYLIFLNIFSTHTVLVFQSMSLGLITGIIDIPTAKRIIVPNLGILVIKTFSSKNCKLSLLAPEMWPKCMYDYVAFKNIEAQIVITSTSVGAVLCLLLILKGSVFVSSSYMFVGGKPANPGTGTRMLLPKDDHFEHKFCHNFSNVEKISASSYAASPEESILLLVNKEEHNKLRVLAVVPKGARNVLVIEIMKLKPFQTTYNDLYLPRDENNQLQKNKKVVSVGKIVLKDPASWVYLPQGRLKMNFKKAYIKSGAAPILLSFGQRLISVDNAVPLAKMRTTGITVLEMAPRGSRVQAIVVLPGQLKCGKSETVYWFTVSSIDNNRRGIAKYMGGVTYRGRAFIDMDKNLAGPPLVSDAYQMLFNDWLEMLCGAMKATESEKVKSRKGASELRVIHRSHHGCIVAILDDLYRLRFDLVDIERIGMINEEGRINGKIRSFEFQNFMLTSKNDMKTGFVNMPESFKPRTILTGDLIDNDWAPSFDLAAIRHGNIQVLVDGNDLEGSEEATNCHHGNAFSLGPQGRKVVVGAVVAPKTATPKCNSISINLQELPANYVVLGAKALTAQHVANFSVNGTKHDKKTCKQHEEMWKMYIQKSGQISKQASIKQCAILLSLGKLRATVKWFLGKYLERIFHVLLKGCKTVETIIDKGRMHKIKLVKFRFGIWIFLSVVCLAELFCIMIFVAPEIVRGLHTLILFLLFMMLLLLNYADTGHEVTGVPYY,18.1991
|
4 |
+
GIISVIDLGAKLIVPGDLFFVLCGKNRPPTSGALQYTILHTKKKLFCCGPTHAKHICLINGECIRDGREKLQNLCKTSGKWTEVRRPKSTYSCSLVYRRVQRRFCGPQKARAPVWILYIVLLSAIGVIIAVTINWVLQVCIILGAVVANGFLIRVLSIVDTRNQIITRGLRRYGIYRNSVKVACTSGSVVIVRIKFMEDQISGGWRPASFIRTSFKEFLPASATAFSRLADCNEKLIEALV,17.785
|
5 |
+
RARILNRSLESARKYLDFLKIDKVEFYENEMTFRVFIEEAPEFKRMEITEDKIRLRLKPDKIRKFVELGNLFKYTDALQLAVQLEKQNKEELVIAEPEVIHALHKHHNHMPIFHLLEAFNDETVAEIILANIGKMPAFLFWVWNRMSDPTEDRGKGFNEKVKRKNPTIVSILDKQVYTIKGGFGAALTKSILGPLLATQNIKIKADYDESLADVFVGLHFVDGSIILRPWPITGKEVALSEEVTATDKVISASEVGSEEDKFQLTSIENNFTKTLLEIKKRRENAFEGAYTETGSKVSDKPVRELKANLKLIPEYQAERIDQTYWRKILRLSRSLISEPRGARAYLLRIGERVDPHRYRPAIGAEMLMGIPNSITTGFKISKTLGLQAAGLDLIQTFRSLSIRRMITKNFMAILIDKPGLKAVFWFIPLVPFIAVQLLIYGVLVGRAKPGNLVEIIDSMVDGKFETRPNGSPAASHKMVIGVKYSLIYPGNQAKKISLVRWNTALSKDVRGQAKEIDLWQLISYYLEKMRIGPSAVSNVFQSVHDGLKRNELAVLLIMDPKTRDDSMILDIMNLRIERGFVSLIKSYIHDYDEEVYMTYREILNQNVFLMKYEEYATMSADLEAYWLKSIEETNLRALRLPGAMRKQLFLANLCRISEHLDTPTEQDAFSNPEGITIDEGFTDEARAQGIGFVAGFVDEKEFEQRYALLAKVYIASLKALAAALADSGVKTGIKIGLGTVERIEVHKDGMMIDHVKMEGPGRFPIIVGGEVSPIVNGATIIPSFIKILADGKVDEGKSPNKTPTEKGEITPQSLYRGMGKTVVLNDNGGLQAHALTWAINDEYSYFVAMGTSNKSDEKQLAALSNSLDMTTFEDSAGRLFSSIVKAKTLSENGVITENGAEFL,17.7595
|
6 |
+
DIMLPKSPLFEEMATLGFIGHTLLAPIKPWTKATATMVGITGIGVTIYWGVPDMFPFSPTNHWWVKGMKAIVPSIIALQIIDLFYVVLTGLTSRFVYPIVATFYDHYFVNVQILVTGIACTLVYPETHGDVVSVDLLQCRTDGKLTQIPMEEALELINFIDQIMEKTKCKFNISEGYYEVLMTKKFIVKGGKGVGPDTDPEPCEKYATWGRLRDPTGPIRPNRAEKSQIAIYAVCGGAVLQKLGVPLLDNEAPIPSQLLIFAIGTVGIAAITIVALIFGGIDIAMSNPVYRPILAYSPHNKLLYPLSTWDVGYYNVPNVTSTYVVVVVPPALTIYSVANEAIKVETTPIPVKFAEILPTGETALLSSYPLTIAQTDLNARYERREADIFTKHEGMQQTFKGEVVPLVSNNRLKSPSGVQIGCAASLMTVPEEDGMTPPRIATTWFEGPYSAPASDPLMRMPGDFYGYGKGTMDGTVSNEMNGISHRPVTLATGGNVKFSPVMLPWYIGARYGLDIQHSGNRRMAHWLTSRAVMGFFKKNVARLADRVNAITLQVPSKDPDLNNRPNHAVMSRQWITAVEAIKELAICSLLNQFREGLGHKNDTIEADLNPFSGVIAQSSMAILKTAMGATRSSVAQLSMGMALEAFRHQMTGTAGIHYLMSVTGNGPGRISTALNKLDSPLPPAIAED,18.2088
|
7 |
+
MASLAAANKRRSITSIAVFLGIAAAVVVLGISGKVTDKNTVLDFSYGKNRGFKPQHLSEYVRSRYPAVVIAKGENLLRGGRFLPWVRPPGLRYVAYYDAIESWDIEDSLKELVDLRAQGLYADVETAAALKKASVSRSTITEMVGMHTNQSEPQFRTEQTKVAKSNGTMFVFATMSFTRGRYEIGSLMLSAIGKRWVEEPTPDTKMRYMKLRPSIQLLCRTGGIYRPIFQLGGPEGIFYHDGYGENSYQVDDFIWKHLERRA,17.9845
|
8 |
+
VYGLLTTGSASSAMATTTLMIGVLFGLFSSFALPLWSWLQYLTTTGITTATGARYFKNIMIEAFSSYSAAIIGTVSIVPLGSSIPAAASASAVGAFGAITGFALGIYSMLFKKMDSFTHWLFSAGAGLSAGLAGLISGIGAIQIGNAATATSGTAIPLFGLVLRIIVSSVQGLLGTIAAILLISN,14.5579
|
9 |
+
IGHVFHLLHMALPIWRPPLPVTPGEPHPRPIADLVTPAFEYKTLLRCPHPHVSPIFLSVVLWMIVALVLAGVMVAQALPAPTGARLLACYP,17.2759
|
10 |
+
SIIFIFMYLTNCLQWRQNGHLQMSGLLFATLGVSTVTHTMMLASRGLCQAQKQRIRRECTLFGLAVHFCLAVGLFIASVSFAVWSSLEGLDDDANTVAVMRWWGWTFSFERYATVKVLFDQGIQSTYIMSWLLLMTKREDFRLLLFFMLTMFASILVPFSRGAHFYSLSVAFSNFATVILPGVNGVGNEIVQQIIFVLLFTFPMFLLIVDIAFFVNLIFKAAHP,17.039
|
11 |
+
LPDVLYHYEERKFVITRSEVVLEPNELFIGKIAVDVANYNIKVKVDLRISSKYVVFNNSQLTWNDHFLQPLISDRLRWVIFRVCVGTSSPQLLIHIDMIENFLQQLLSFLKGIVVQQFVGKVTLIQEDMKIEEETALLIEIETYPEAELLKLVRNLIIKVEDRTIGSIRHEAQLAKINDWSAKRIISDLNIGDIDNGEHVLVSAQEELESSIMERLAGHLRKFVNVGTWTESAAIDIVARIYGSLSVELHEEWLVMLEYLFTYPNDYFPGMYTVQYYQNADPGELLKNHALIIDELQRLELYEG,17.8596
|
12 |
+
SQGLDDLIMTTVADSEKDTDLTTTADLNMVPIYVGSNETATSQLGMIVKRKRPEKPIYVPVHSCSKDDRACAFVNFFNLARDLGYIEQDEQRVTPDWRAIILTMAEDHIHLWSHPNVAILKLRVIGEKLADQRETMKDPLNTRVEQVALVQAPKIDLIRASYGSLLEYQGEQKKYRINNTLSRCESLCADAGVGYMVATDAKVCQVEGETVDNNTGKDGDKTEILRAHFKQPSAFNKGSGVLRGHIMMTLGIGLLILLLYVIIVFFLHKIQNATFKFRIPRVAIATSLVADACMSVLAAGIAYALANFPVFTAKIYAETAVVLVLLVKGRLFIGKNKEIPMTARITIIRLAGAVLGFAATIIGIVILDPVLSIDGVSLAPGKVPQLLCLAQTAVREGGHQTWDLQLFELSKLSGMKIQPGKNIVRDPDKSNTAEEPTVALWDMVDVPGDIDSALQKDPVVKAMFKPHTGETMLMRQDIWAVQRWVMNSLGKLRLGKEVAILRKYVDTTHPAGCCDTGDAAIRQAQTEGKTVHSDGVRVLEDSVRMVGLDGDGKTCVGQAEEQLIQKFPCEKKMADDVFTSARALALNASTLIEQTDNGGDEWGENDTIKQVIKTGRKVEGDAAEIATPDASWNDGVYRKSAVFSSVTSDCITDIAGRTNTIVTIKELKGPRSLPMITNLRKRTALILAEMKTLIGPGGLYIDKTGIDCKVKDEGKIDSQIKYEIRGIELYGNMTPAPGIKPVAFTGKGGSGKSTIIRVKGSVVPSFVPINKFGKGRGERRTEKNADALLIPFSNAKKLEGETKVLIPDFLFKITTRNVVTVGRIVVGGVLDNSDVFEGFDSIKLVQAAMVEGQKQVTIVGINRKEGPVYGDNLLLSADIETEEYMTYGADQALAKAAILRRSGAVLFALVFGGNPNPRIFKGTEIDDVWLKIKPRAQMASVKFDEYIKQGTIAVHGGGINNGKYLVEGEDDPCDPNDQPLP,17.9744
|
13 |
+
MDILKKLIGLSSLLALFLLTPDLLAEIVRDIVGVSIGEMPEIYIYLLAFYLLGLMLASMTTSPPGFSFLTTRIIYCIFYAWYYILLTLIVTILLIIGKTEGNYKISKQFGVTENGVIMNMIQKAWNFLSDISTGNYLITMWPLNHFGVVPWFNKAAGIAWFIGPYFTYRLSQRPVNFIFSALSFVIKKWLSKIWGKFVRMACAFTSWVFLMGVATTLVLVIFNEMKWIKCSILNSKQWFGKLLGYMRNSLTVLCQKTSIGINMMLVSVLILILIGTIGNGDTAIYWHILFLIYSAIGIFAFVFVVQIVVCNKDRGKKTDLSPAVYAGLAELLPSLSTSYDNVNLAPQDYLTALNVIDSLLIKLVLEIIVAGFLSPLLYDFRLSSDTKLIFCFISLILFGYVFLGFEKDKAESEIGHSRVPSIPRNIHNHTAATVVRLREVLYELFTSQDEAHLGAHEKQNVSKVLLFALFFLFVSTYLTISTPVSNVNCTSYRLDTPFSKRKRQLSLALFSIGCCLDGFSTMQHMVCGEEFQLDSFFKFFVRFGKVIGKRVAMFFFWTLAKALASYSDAIIAPGYSEKMAHFPPDQFNGRAVDFIDVDEDLFANGFSEGKTRVAGPGEIVIFYQIGGNKFEAMFTVSEPIKLLYYDKGIIQAEYKSEFGCELITVGFTTPTVYDYLSPVPAYYFSLVKDPTGTFFDLISVPQGSIGYVNAKFQAYGEFWFGRIVHTGQNRNYITSLPLLIHLKAGNILFWLICVVDLTTTSILGKGNKRAVEVYGLSLLSQCDSFHTEVKIIEEVKRFFSLKQRKYLSSIFYTSYMNIFLALQYKAFAMPINAGVFVTDLDEQAGILIQAKKTRRRIPPRLIFVRDRVSDPNIKIENSSPLFNVYLLSCGTDYTSKKIISIDNRIWALLDGIHKEELSYEFNYE,17.5258
|
14 |
+
FRFCYTWVVLILVPSIFIRSFLRWESRFYFLKELERKMSGGDDLVQRSEQVETSCPVSSRCNQISEKILNWIKCEHKRVLVGGDVEQIIFPYTSSPTQSAEFQKMHQFQFLDDSGTQEANYVYQRIDETGYFRFADAAEEFTGALDVEGMCENWNVFLCMNVSTQISLILNQAKAYMFTQVLLQDGTPLVQFLDPDDQRLLVNCEDNEASNEMQDANRYQQILDVDYLLLEIQNQYYPAYFLVNLNHADCFKGTPLFTPKILEGVQDVVTCRRLVWLKFALNRYDPYDSVGSLCNTPRYMRLTRRLMENWDLSGVFWTSLTFLLGRCW,19.2309
|
15 |
+
TPGGFIDQNREISHATRNADVNYSLLLLGHYTALAGMHAMYLGPDNVVILTEGGDFATLPYTAAPTFTAQFWQMKILAAGFSVVIAFGHFVFGVSRFWHGMLDVTMGHSSALSTLFAGHIGHLICHAGGSLIFFNFDSEPVVGTTVTIVLPLWFTHHNLVLIPWHEWTLNHSQLVQVLFKPNMSFIFAFGGHFRGMHWGIGGVNEFADGHNTGLQYHHSFFILLSLLALAVHALQISRGIIWPARNWNRAKDFWNSDTVPWISYVVYTDAFWALLAYTLGAYWAFASSGNLWTSIHQRYLQSEQVTVTTHATAMFGNMAWGGFITPVHSWIFNQGKLWSLSQISHVSRGWRFVLNSFHHGLWFIALVGIATWFYWRLHFRWGDTSLAVEAGFWNIHWVTSNAAPLMFFILAYILVATETSNKY,18.3108
|
16 |
+
RVFFVQNLAMMLFLLLILIPLFGDKYDVLVSCTDEAFVELNYLIVLAKQWEIGCSERVVPMAAILAFLINFGLICITLVVGGNVIQWYSPKLHEKNHFIWSCLETIMVITVVLIFLQVLVCLGFTNLITALCWLPGWKLVAPWQSCALRQRITLALLLLKVPAFLGILLHVFSKQGWLIISGVQQLSYILSSLTMIAVDLWGGSIAIQDCRGKHSLIVLKVRVLMLYAPLLSSYVYWFEYAVGTCSRYFLEIVDFLVLAFMIVVLLILYGREYVERLDNIYSLVDGANVAESLTHTYILILIAYPRTNPNRIAVHIKLISFYVWMIVIMVFARKALRRLIPCSHPFGPKPTVSDKINAVQSGSTKAEWESIEYFVLFVFVILVLLLVGLGCIKLYDTFWNPQEDLDTDIKTDPFNNSLMTIIGVPYLVTVVIRKTMSLLPLTTMFKIVGVLIAGRLNLTIGWAMAYVTAFWLVTIECIRFFHPQPGVSAKPECLRFALTTATVLVASATIVFSADINRNHKGEISKAAGFAWLFAYVLLMFLAVAFVIWKIAERGVLGQSATVSRSESEEAVVYQTAKDARADIFPLVDDIRVTEPKDSAGRVINLGMPLTPSGQSKNLLPAPGANPVPTRPCVFNACWTVPDTVLVFCTVAAQMTLTFRELVLERVKDAIHTGRCVHFWPDLAICADVFDKTGLDNISGVRMNIAHGESELSAIEFNIKFQ,17.5525
|
17 |
+
RWSLATLFMVISLLPVAFVNFFSFKEGFHFFGFVFAIITLGLSGIAWITKLRDPVDKMFFFRVRMLGWLRPTLVYFIMYGILGIISRLTALVRFKAMPIFMQLGHFFPVVNGILIFVANRPMKAVRLQARILNRIARGRWTGASYPEDKPGETMTDEEFICLTQSGMNLGDSFQIIENGTLIPNWLTSSPLKVEVLLYTYFLLGLFGLCVSLRLAGCGCLPEVIRRMWCWIWFALFFFSSFWQVFRQLSALRIALGRARWKKFDFGPVSFGLVVLFLVAVFLSQVLLVAILDIDEMRQKFAEVQTALTIPRNLPELKDSIKSTLLPFQGELQWYSQWTSLIVYLTHLIMTGMGKAMELSWQLFNLIWAFLCSNNGFLCFFQEYFLKLFLWGSAASILLFLPSILNLVQRLVPFTILIFFCVPPLIAVHSLYNRGLGVFENDVGTLKAKAVQTSAAPDWQITETNGPDEDYESHIMAIVTFVNLLCLHIIALLMTGTNSAQPLLFELKFDAKVFMAVFNGLIRTMSVLYSRGCETYALLNLLASILLKLALWFWAEIEEDEFASNISLGTLLREATRHIPVLITPVAMVNGAAGAGLTLLWPTRGHVYLRGAGNKRPAGRTSLGYMAGPSGEQFYIRGAFWMASIEISAGTGDVEINGSHIAFFALKGKMIKLTLDGKPASKIKDLVTRYADVAVDDKIDFEWDALAERSIWDKKQLKKGMQLNGSWPKTNVMPLITGQDMSEKYLYARVDLQNFNYNVKGASNKEGIHIIDPFGSLLPLVVFSSFGIIGLGFLYKYNVWQDTSTLQEHFQKRKTTISSSKPVKFTMDEPKLLGPMVFLTFQIVVMFLLGFHKFPWLYFAYIYKN,17.5249
|
18 |
+
VYPAGAALAKAAQKALENAIQEHYEVAMREELEANPERRLIAILKGLARVRSAYAEIDIMRDQAQNAIEESIEYANDMYKEGSYAIVTPTVRIHHSIAPVEMQQAIELMADLAALGYGDAGPVVAQVIQLPGLKFRGQTHPGASPYKIDVDVAIAAINLAVERLLDALQEVYQQPPKTVKVHRVSASHDVPLVFQVQVFVQFKINGAREGDFIYPGRDVSPQNRKVEKFDERRKSTRIIPIYRLRLQNPGAAFALKDHEAITLGFAQHYLLGNWPIEVGETPRTTQDGLPSMAEKAADSTNYLLAAANFMHGKPDLEVQMILKANLCSTEKKVTKLDRLALAMNYAVYLVMLAQDLSLFLKVPQNVKVHDGMGGDYQIMMSTLPSSVTEAEIEKGGDMHVQLKALLPVSEPFDAEDVIFGQTARVDEYLVDAKMAKLLRPPTNCGTNYKENSENAQYFPLGRNINLVPCTMEDGSLGLTGLEGFSLSQAGNQRMWAVNLIDRQGKVALLAEFVLNELISLSDNAEQIADSHTLKVVGVRGNVGNLWTTGTMSDKIEYTPVLMSGETKLHASLGHLIASTPDLTATMQEKKLTLLLSPPAYDETPPKIEKLVWPYEKNAEVTGPWRNITKAIGTSISDLLSLSNKMAKVEQERDAKMETSELQKYDNPEIRISRKLVSALVIIISLLIFALRHRFALATWRGCVVAIGTPSTPLKRLSGIVRQSADAGITTAGSKCSRIRIIIKRGIFMTTLGISSTIITLVFAYQ,17.9413
|
19 |
+
YMKRGMVHRTLTLLLIFMVLALGFAIDIRGWAMFLPEATLMVLSMLGFFRQGASDPNYDAVMPGVVCEIHMRTSMLFFSWSIALAYLAMLVNSAGQITQSPKIVDSFTKIVSAGKGLLALIINGITVAKPTDGDELFSQFSLTLTLTNIGSMSIVPQIRLQIYRWLMKPPHGFLGIFPVLSAGTSLAIALFNFWRNSLTEQYFKFLSDMTNSINAQVASMVAHRSMAFNWIGTIWQYCMITVFLLGFVYFYFLSETNGIQLRLDIDHSCGFSNVPIVFAHEFLTIACKAAAEILKSDSDNKVKVHVMSKAENIAGSGQLWLEVFESGSLPGANASIIQVIPNRKREADIVGPGTVDGLDGATLLLSPNNIFVPPGDLVAARGNKAAAGATLGANGTLTVDARKYGASKINVGYDTEAVGLAVCTLVIGTGDSVLPTAKKQMDNVVAFLIKEEDAWALQQPLKRSAERGYFALTMAMNPDTVAFATETGLRVCDLMNTLGDLFSIGPAGLDAEAVGAQGLSTTIDMNKHVFFGLEAKFSSSNINQPSSWLGALEAGLGNWLSLRNALRGDGPQPQGP,17.4011
|
20 |
+
AAYAQKNAKIKRKLEETVLCGGCDEGEYRRESSFGAISASDGFTPDWEHNLDGQPGLYVTKLIYKYIQHPQYLYEILAVALLGVIGAKTSLFEGLSHPKRRTESLAITFNSAHVSACLTVLTDYTRQLTYTLSACLVTLVSTLYAVNLIVRDKKIAADIQFFVEASDYLKMGLEVTRNENVTPVNDDDFFSHILWLIDHTKPTMIEGHFREYKLVNKFFILEEHGLVGKRGSMMDPINTFIKCEKLLQLIDTKYGGSVKKLKSSKVAFYNAVSEECAPVKITLPKTSDILAHRYVSVRDIPARGVPYTHSFSSNVVSAITDGRVMDKAGDFDEDLAIKIMGLKLDGFTVMVYRLDGFRMGETSVSKIATLEALIKDDIVTHELITKSSFTRDYRSMERHDFVLGSNFPYCSPAHEDTIEFKQKRQSYVGRAVADAKVEELELPATGDRGEVKDQVAKNMKVLTNQAMKVHVGTMLAPDGDIYSITKENVLPACYVDVKGYLTRRNILGKLKKFMDVFEDFAKVINILDDTGSGNHRFNRYWTRRDSRLGKPLLLTHEDDLETNVADNRRIRTNKQRERCLVRVLNLECEKCHLPEMVVLGIFIGSSAILFTLFTLMSINGVNVLLDQVPPSGFGASIEGAMREAKVLVRLGEFVANKANMFSQERGGDVPAIVPMTEEQRSDLNKPCKEERKISKCFTRMHGSWGGVKRMDPPFTRGGYLMMRQTRMGIWISFDKRKFGKTQKFKYLDCGMKDPNVWKRNINVGCHLVNTYADTNFNCCTQTIQAVVESHWTEPLFVARTFQPVSICLIGMLQFSYGPVMAGLKTPKPHPGTLRVVNVSTVNLMLFVLFNYLRPAAYNGFYGKYTKPFTLGVSQKPRAWSHKIITPPGPKQDLFISFFSHLVVLIFMVVMWIYFAGTVTPFDFQYYRQVSLDVV,18.5249
|
21 |
+
MKYNNYALLSTVTILGLVFTIFNWANDWNLHLNFGLTTYLFVGGTFLILTTFGVGQDDPSYLKGFTINLAGKMIIGTHLPPLVPTPFSPFIDKISKHLAGAHVTISAVTVDNIIGTLLKLLESGDNREGNWRAHRLAFHAIGATIFLWEIVISIYIGFNDGFNVDNGEKVSKTAELITTPSGTLDHTGSAESWSFDDDSSPLKWYNGFLISKEIKYKHRPLFSLTTQLSILMYNRIFIVLQLVIVHSERMKLSLFDLFFQNFFFFSTIPLDLEGLSGEYRSIGGKSDIRTLIVSCFGSLLHG,17.1279
|
22 |
+
KNEKTNSSSKKVQVADEIYAPGKPVAYVNTGTTQETIASDAILWLASEFSAIIEIKVVLFGPVTNDVYSCNIANYSPIPQGLEVVHKKYTNKNNLWLFTTGYDLNITFLNTDMLNLESSFLIIEGAISTSRMTSDKEITNFEVPGNAVVLCTYNAPSITSKGAKAHEASGGLAANLPREEQLQAILRSHEQYVSRKMKADCFPTTKAVNDGRILLFYLSAKNLVDSLPMERGDFNLIYQKMEVKIYLDDLLKTREEIQAARAFMTEFIVRQNGDIKLLGLSEISDTSDGRAEVLDLPLESGNSLSSEVDAVLVVGQLRAMIHGTGTFTGVFIPHDLISSGIDPESDREGIGNFSRFDRESLVLFGIGVYIDGVNEIGWFKKTPIAIGIGNASYRRSNCLQISFYCDVDANTHEDTGTSKGKTLIMATNEYSIAGAICEACGYDVEGDDKTDRQIVVNQPSAVTVAGMPGLVAKTHNGFRNFEKNFEYLNFPVSKVLAEEGGLDYFWTIPPGNYQNNVPWNPVRAQMTSWGVSTTATLVFGVTYSRTLLVSLRVNATLTTNSLFAFFASKLSHINTFRTGGIISGGLCSVLILNFVVAIYGVSLRAFGGALLTYAMVMIVVLFCREVWKVMYYADIYGKQDLIIFELLNFFVNFGFILTIPLLSTASPPGSIDIKLPGILRTLSLYNDNQQRRTFIGKLLWDPESKVYNLKSGEAKLLGANASGLMAGGSEGAVHEVETDTSNLVFRSDVSSP,17.7156
|
23 |
+
EGEVNRIVLDLSGTSDGSVIIEANKVTRDNVSDALLKGKNFNAPAKTSSYPAYVAASLERQDPKKTFISFFKHAHNNAHGGQGRIINLAFAHATQTKRFNVFFEAYKKHGLKFDQNTFKFHVPEDMSRKGTIAFKGNDGEITLVDVFTSSFRQQISQITIRQGLWDWKSTRKNELGYFNNTIQFQGSKTTGSADLIFALSLLGAIRTIREYYPFKEQYVLLHRTWTNLQKKNKASWEWASARDKGQLNTGTKQTFATSLITELPIKSFELMTSARSLPEMEVNQQYEHYRIREYYKCRGAGEDTLMKGITGSGADATKVLMISYMLNEGLVLILDYSQQNIKTGNTIAILKEQGLAIKTSPSYSIQRLTKLHIYAMENLEIFPLHREQVNVMNAVLLGELGVAADEVSKANFNNMPLPSRQATVLSINLQDKDKNRKVLLRALGDQNSFIPPFDKSDVQNTVNLMESITKNQAITFDLRQGNGRSNQLIDVDI,18.2889
|
24 |
+
NTTRNPTENMPTPRSWLTEGRPYIAYACAKCKSETDKANKGLLFVTKDKIIIKSVPGIADQIAREVKEFFNVQTPAEGWDLVVGDVTADASAGVRGVLGGIVFTQKGSVLQALAVAVTSIGTMILFLNLFSWGGGWVTMFGAAENIITSLAMIAKLVLENKVLLLNIGMSGAGICLMMTTDVSPSVLTANFLAYAMIDTIAFAGDAITYPFTIDIGDAFFKFYGGAEIESVYNKQSKPWPSWVAEQLSFASASNTGAGVTWTFSLTSINKSYTLQFLQAVGLLLSAQSRPPDLLGSEAALTFNVTYVPLGFEVNAARIKTMLSPTKNVNQIGNLKPFLKHLTESLGNLKTLLKQRTQITEDDVDVRKLATSIEVPEKNLLNNELNKIRYANFVSKRLAVALNDEIPDLYKVNDLKSSHIFLKSNANLGNGIERLNTGIDIVSNQEPQMLTMLFLKGRLIKNNGTTAPLTLWLKYISNLTTLTNIGISVEESANRFRNLQNSFFKNNNILEINIQVIANPTDAEKELNLVGY,17.3426
|
25 |
+
GAQNTDVILGALSNFILGAFGLYYWFQWGNVILHQAVIMSFIHLVLSPDWTIWFYPYFVSEGCLYRVVLAIVQRTAMTLHISPEVSKYGIRAALSSPQEMYSLSRGDLRWFFKDLAIQKVRWRRMPPAVMILVLFIAYQLLQTKTITPTQLLLIQGLLFRVYGNLMITITILGTVMGVSPFTVIYNGWGKPKGITYCEFPSAFLFLLEDYGSGEEMTSIALPASLFVEYTEKASVIRAGYILSQVDEFSIKNMITRERNLPKSELLYVAADSGVNHTLNICQFPVSDTYLIKYSFIPYKLYIEDGKKVEMPPNKVWDAIVIGHYSQDDYWQLAAFCNQEWDFANFEKMLARPQRLVDTCGMALAATYWALLVQVLGAPILDNCLWINTFAILFAAGILWQIPPLRQDMRIDLSARFKHSVIVVAAYPYVLRLTWSGQSQQKFDLFIYFFLAIFTLSFNSVHYTADPAREQFEWRDSTGKDIPCVFLFGLTVTYWYGALHTGHDPESNTGLSTAKTSFDWKSQFQPFDNQYTRQATELLGIIPCATLHRKCRETWTRQRVFNVMVDMQQGSARFIFLIQDTAFNRNFKGGLIQDRQDLRKMLAISPGEALRAVIHRREHAAIEKQLNDVRADELVVAAQTAPGERVQELLRGSGVSYSLTNFVTFKKNISDDERRVPAPELVFQIVIVCCWDSRIVKALLAIITITSLAVGDLSGVFILFRS,18.2048
|
26 |
+
GELPALAGNRCGEAKLFDILARPDLPRRWYIHLGSVFTLMLVLTFLGAFIGTGCWVDGGGFGKFIDRGLSQAPTFGPQVLTHLYPEAWAHFFGIADPAGGYWLYHIILFSGAHGVFIFAGGALARTLRLGRLLGMARALGMRPKHCAVGAVGVILFLTAFYYLPDGNPTFTPDQGYESGSTGTIMVIDNGAVGLLFHPLFGAGLTGTFHTLTLAHEGTASGEGLSNLSEGGTESETYAAARLNALFRLVANQGRAWRALHIYTLPFLSLGVCAALGLTVAHAWTAFDYNNFVAAARADSFKFGANNWVLAANDIRAGAGKFVHAGDEVLPGELIR,16.0959
|
27 |
+
ADFFVRRQSTKKLYGLPLDGSVNDSVACIWGFAVFWNGLVFPWVFAFVGLIGWRLQIRFVPGSVIGLFKFELILSLIPDALAHFGVEDIYANPEYVFNFPRGVLTFASTHGIRTLRALRFAYPFVALFGRKAAGLFRRMGVVCLMAMVIGVGFAVAAFFFGELMPTMRWTFGEGGIIQTPVFAAGFRSSDVPATALEAAHFLVFFLLGLIFMAIHTGAAIFYAGESAARKNEDSQTFSWSSASSARLTRQRDREILVRRNGTSGESPGLA,16.437
|
28 |
+
MSYLYLVFFMILILFHLNLLTYNIVKKKPPFNGKYKKWEFKRAFDRYPVGYIYYGHGQWKDERNKTEKHPRDQ,29.4763
|
29 |
+
KVAAIGVPFFGLLIALLLNITMVFLSQTTLSKYWFAWHIFAIILILLGLLVNVLVNQGSSGSTTSNFDSGMLAMISVGKALGWNIMARYTPWQTGTLNSISWFNIGGAVTVAVMGKMAGIELIERENSRTPEGFSSPWPVGQTPAWMGAGPIGGVIAIVGISVSAVAVSALANISVVDVSNISLLLEIPVNSIIMGEGVGFYYLIMVLIMGMITLAYSGGFFSAKFGGYSERLGADLAGARTPLNVYGENIPKVMRATASVPALFRRPVANLALSLWILASLGVMVTYFESVAIFNRTIENIGKVAITNGQSVDVMGFTDVYPLDVDESNFIAWRTAIPPGVLVGVTPPIFGRIELVAVNAGLLKLERKGVAQVIDTGPESFELEAKMLAPSMTGSFSTQAAIGGSAFAAMFQSSTGANSVFVSFSKGSVAFSIMAGVFIGLVVALMLAGLNWNPGTVMKKLMMSMTVVSAGVSSIFAMVKPLALTTSSFLLVESVVIFSNSIGASEFIGFAGGAAFMVNKQFVRALASGTGALVIGGPVFAIGYIAAGLGSVTAAADVGRAAFIMAGIAGVLTGVSMLTGSLVGSAKFPDRSEGKMKVLRNWWPGYSIARLAGRFETSNLLMFFTYVADQLGLLSKDLVRNAHNFAN,16.5548
|
30 |
+
NWYNIRAHNYVAGTTMVDAATKPALATSIATQLLGTSDYDTISKLEHNAKEGGKINLIMTNQFPASGKMVIQQGYFGRGSAVPYTNRLPLIQLLSLVDSAATADKEQVLSVGWAIDAIVERRASKMVLYNASKSFLLGKISNIMGSMLVNIQISAAGQYTILTSYDSILTSKFLSYNRPVVDQGAGMINMATGTTVGANGQLLLRKVKEYITKVQGIDASLLAFAQRGLGSVTQASISARRPTRNRMEENAQKGAPGEFSKVTDAGGGHLPGSKMVFKRILIPVFMRYAIMDVRVKMAKTTYCPQTQTPFDKWYYTLNFTLRGTGYTTVVANPDKTGKDVMRTTMHRADCTGFEVAGSVDLGLQDIQVLEMGQFKNFDVYLFLGQGEGSDKYAVAKLTNAPPIAILNGFSSTMTLKAIWYTWRWPTMTRFSLAVLYFAAGHIMTRKFQNTAFMRDGQARQV,18.0029
|
31 |
+
DFDMPDGGVVTPLKAGETVGNLSAKGTLFNPPDDLHMRGDHNETLKYHSVTAVVIAGLQHEEIIGTAQDESCGYSAEQNTHCVAIHAAHKGDHDSSIALETEKVAVLCGDTEEGGYIWKERRHLSDSLLARIKAMFDVRFYDSHYGDKPGMSWPALRPWMKRGDLRGAWPVFLGAGGFAFNLGSMLGDGYTWNIYAILPALNGLQRLLFALGRPIRAVKYVKDTFDGTATTSFLLFYPAPSVFFLIAFFFGAISALAAGYMFLLEGRASLPQAITASIVAVSVCWQYNALFVGLMLVGEFCPRFAGTPAGVMAILGQMHDVLPHLLMVNEAVLAFIKTILYLLSGSGEPPLEASQMEYSAIVGGLVRITPAKDLDDPADYAVTGYAMITLVGFAIVLAMQVHLDGMCGDFSGVRFANPLHVGVKVIFNVDPDILCGPDTVTVGTLLFWAGGRFVFFRAASRILLPVFLSPVYKRWGSRVSVVATAFLTCTIIVGVRIRYQNDEVYANGAIYSRSDCAPGMFEEDKRFRNLLPTLEYLNINCYFYKLKGHNQINVHTFNWASMVFALYKKKEFIKQALLGWLNGDKIDLERQKEKSPNSENHDSDDWRGDVTVSGFTRPNCGHQRTTTLLQKVRFRTRCMMSRLLHVPFRRVAVHFFSFVFIMRLFSK,17.9999
|
32 |
+
GRFRTYVKFYLRFGACHLPVTVFVFVNVAALVPFILIARLKFTSDPVHVTVEMFVEGMTFLTGSASIMLFGILMAFTDRRSELMSWWFESEGATSAGLYNEIGFWLFITIEFGTGLIGFGLRTVEIARALGFKPVINFMYFAPLMGLVSVLASIRLGMALSLALDMSPVVIVLTGLSGRDDGTNFAWLYGGIGGSGTYGTGLGDSPGGSSFLAVMFARGVAKLGSKVPEIAWAIIYALLPAVLGLGVNALPKYYLGELRVTGIRGIPFGDPAIVTRSLTKLLRQEAPVDLLVEPLLIRHAILVRSVRTMKIGELVQIRVDVPLESFEDSKIRSVDDPLLDGDDVISTTGQ,16.3933
|
33 |
+
GVSKWFDPSKVNEAYSLSLRGDKYETTKANKTELFGEISLRVKEYANLSSIYYSSTSGYKDGFKWSDNSSKNKKVKLFNHFNAGDYQAMWEASRYIHLNQAKDCTLSYSAWNGTDAVSVTQAAGDSSLTLYRTINSTNDTTYFLLGSMNGGFSHQEQTDCSTSIPNCSAQFPAANVPTQRATYCVVCSLHNDHCKSTDVSEGCAGKNLLKESCQASFTNYKN,20.0769
|
34 |
+
YLLWMHDKSAYMQKSRTPSVQWGYGVAAVEKLAQWWASAKGRGGWFVDPPSPKVQAIPNGCLRNIASGFWKPPVNYSHETSKWKFIYVTLAFENLYSAFWRFFPGFMGFLSPEWNRKANKWNVVGKYDYLAAFVLKFGASYTDQTHIITWARGVRDRISNISLTVYVGANKLGNVLLSLGGGLSFLRGEFQPYNHYRAKFQAVALYDWRMSMTYSAKYLQVLSGQSGLKETVMTSGFHFFRLTAPASVFRTSQRTEVYTLFLGGLGEAQKDKEVYYITLPTLGITYYSATLTGSFDFSFHVGLKEDWRSIRRGHITLHFGAGSHDGKLTLRNVVDITRGIPLKYVDFRGLEFKWRDKAFYIHAKPDPQAFWVGIAPSDGVKSKIGPLPTITRLTPQLLVAIDINYPMFPKDGVDGYGAVEGESRSYYVHVFTAFDMQSLFNGQVHANYQKNKPKKDVIVTAATTPSSEELIKQLTQKCGKRATFMSIDMQDK,18.4373
|
35 |
+
MNPLPYKVRFLEWTNDSAPDTCSEAATAEPALRCSNIVGVKNPREFDTLWEKRKTRLESGTLTTKLESPSRMAILKRSIFRIFINFVVALGALVLLVISVSLNVRNNLLDPAYRIGVSQNKIARIGIDLFNGPKLQVAEFKICLGQTVFHLNVLHTILGLLVFYFTLGGADEDSARYDHDQYLPFSFVTNYTFHFEVAHYAMEQFGVGALANLLFLILVAHTIFVVSEEIRRGMANRVNLKKTSKLNPSGPARIIEEFQYCAYFVNQVLKIGKWAEPAAAQFIGRHDMIARELGQKLFDDNPSQSEVNEGVTAARVKVINGCSKEPCGKPPVMAQDLASKILDQFGTYSDTPIIGRINTIMLNGNTENGQTVIDGWLHHLQQRLEVHHIPLAESYDNFIFGLDNTETTLFHPFWTDMEEGEYGNPNYITSGERLINYRRALHNTWGSVFLPLYVFFWNWSILRPPPDAETLLKYQISMPSSIRATAVIHYHIHWLTDEEKHYVQGKITQCQGATIICESTATEDLIEFVTLDPAWSHLTGGRN,18.4536
|
36 |
+
MRRANLTRADSIADGEVDSLVRASPSLPRTEDDAVYLDGFERRAPDFEAIAQLSKMRYAGMSGLMDELKKLHDATDLNELISMGEMALVESENRTNAIVRQGLSEVLAAEDLSICDIQIAGESGSVGFGRGLRNLTNYVIDVEVRPNGHLIIQAQCFHTEDKSYEKADSKPLDSVQYDDRKVGYQGDSVNAGIPEVAAAGAGRKVLYAEIAVGGDRGDTGWKLAPIGSVLGGGDGAGIRGWATAAAQIYNWTRLAEGIASIDRGLAINGGARLDGTQYALGVGDANQASPVLFTGGLTGAGPAHVRQFERLVPDHPLSKTLVVLSSINGTVLADNSAVGHVVARGNTGLEILTADTAKVANGYTLPVRGEFDVSSAGNITAVTAIAGPGEDISRQAP,17.1274
|
37 |
+
GSTKDQKQTFTSFVGWIIFCSVATLSSFVYQQVLLKGLSQVLDYLAVTGSFGGIGSILCFFISTIGSGSGTVRTNNLYQHAASIFWTIIGFFGIAEAAGLVASLVFYFFQ,15.303
|
38 |
+
SGLPAFLAGIYPVIGGSLAVSIAKIGPTVPILQAGQAACHSKLLPSNEKPVTIPVILSLAYGVLGWTLGGLGEDLLGELGQVIGIGGPKL,14.4576
|
39 |
+
RTSQIFEAFLLRTKALKWCWIVLHLVTLLLLTSLACAYYQVESAHSQQPVLDCAYHYKRLGDGWWVGYSQGVIGFGVTAFILLISHQEASGVQDETGKFARYWKLNCTIFLTFLVTWIGLHFMIEGIDTFIGYILMVAVASALLGQVLISINEVAKTTLLGNNLDGITLSYGASPEPVSKNLEGDPAVYAQIANSGISIRLWWIIWALFAALGILLFVMLTDRHPTPQPFVEAGYLEKGIMTVLLLALSNYPILPAVFLIVLTSADIRTHRNKVVYSCNDSKFISKLSAYFEQTNKEVTVMMETAEPIVHVGNYSSPVGAIITISAIIVSTLGSLGKRKSAFPVTLTFVVVLITVIAIANNVISPSDQPVGDNSFFLFEITIALGVDFSSFILAICSFLKLELNTIFGSFPKCCYFLLSFVIMLFSSETFIAEPLFSQILLALISVITLPETTSYFGQKAVSFIKFPCIKDGFSILPTLLAVLELFGIVRNLRLLRLLRSFRAFRIVSEAKVFCITKTVLAHFYGPLRHRLLMHTVKGRKEKLMQALMCLGILAFLVSAIVEAIVLLFASYYLSTCYLLPAFSFSTVTLSLLHVYLSYIHVNTILVALVVSIFVIGILMSLILRIHKNMKAQANN,16.9812
|
40 |
+
VGSETIGAPIENLPDPLQAPAITAKIPTGATVQYLAQEPGIVGVWLQPRMVAFKVNRAIGSISFLIFFFLTTFAWLYITPGQINVVGTCVGVSVGGVLIGWGILIPGDPAKASFKADKYRWVESLALKFGETAARACYGYLFLSVAAGLEYLNLFIF,16.1419
|
41 |
+
MNAMHLVRLNSAGRGSSVAILNDNLATGAAGVSSHMSEDDRIDVIVDFSRGGGGMQQEALAQYLTARLSSDGFLLADINKPNVNIQSVATSSQFEVQPRIQSNMDVLVINWLIQGKDSDFSTLIIQRGKTPYINSAHREKILLSLNSINVADKDIELDFDGYQTGPTQQLPPNVFAASIGTSLAIFFAKGEIPLRYMINSETNGIKLLQYISQSSPADMEREVVLVNHEKEIQQSLNTEKLADSELFLEGWSEKIDNSVYVANLFEDCFHRAVVGCVATARLDDMMGTVEFAAWLNVDSQGKLLISEIYTSFTPELVAGQAVVGGKFSTVDISTGEYEIFEKRAAFGINTQTASALIYLPMPRALAPRVEFWQLIEKLMKASNQSVMISAGVAGTFSGGRGLLYVNGLNAQLVGMLDALLKLQKIFAANLGANPNLSNVLIIGDTDSVLALSQGIKLPNGMSLELKEVNKLNNTFLDELSEIIGDFSGSSEVRSKIWTSTQEVKLGDLTEPLFVGVSSDIVALVANGNIELIIANAGVSPRANLDTAQVFQRGKQVIKSRTGPSLNAKGLYLVLSDQESIRSCQLTGAQNLLAMNIQINLKVVVRDVLSAAAMAFLAKECAIVDIGGCEVSAPAYPEVVTLRYDTQTSRSFGQRIIQKQTLGNAAVNCSVSDAGQSAPGSSGHAKGNNTAYISVIAARVGGGIGDLAIVLAGLIAGATAATAPNLAYKWKGNIAPQAKDVLSSVKNGDRSLNTRDLSVEPVKNELAGTTTLNWHTTFAMNSDSGWRNVHPYPSNGNFP,17.5854
|
42 |
+
AKAPGLVGLGIGSVSGLVVGLALSFLLGCVCTDHRWAKYDGAGLAILEGMALNDALLWVYPLQWTLIGGVSLDSSSVSLVLVIVACTAALAGVGRVLRAILRFFAPRTRSQRLLLALVLSEVAVQLVVFFAQPLATALPLITAFTDHTLQVCYGGYTTLSPMDTLGQWVTYVKANSTGGTSLRDPYRALSILLVSFGLVTVAVGVTLKRFTASAGDCQ,15.0093
|
43 |
+
ALAQCVLLALASGVSAVLAIIPRKETYIRAKIVSIKKAKYGLSMYERGGRLKGLGIPPWSKAPRSNHHLGVYADEIGILGTIFGYTVPMGALVIAILITFAHLMPSYIKKYVYLTQVEIENYSPVPHQVPAE,16.8979
|
44 |
+
KECARRIKGCLNFTGSASWLSFVNLFVKQIYTGYVFAHASLMTLLVWQAAMHHIVNMNLCDEYHWTFTTATSGPLGYRNFTTLAWIDSMANFVALHRHFLVYGGLYHVASASLFTAFVAHFIRRRSPPTSFWAYLNFEQKKFLSAYSHGHHLILGSFLAFLTHLDYFFDKFSVHTNAFSQSWVFRGELTPELAVNLGLMFHVKHFSLFHFSNSVLILALHFSHSGAFIDEMRSLTALESAYGTMRWVREGMGWHRGVVERWYHGSFQVKHTEEGSMQFAKNFLLYLPELPRAECYAAFYLRTDFKGNLALRRHAEYRRKFYMMEGKTLFWRATQKGLECQKTWGAGFARTAALTSSTHAVAHVANVTTGFVLGFFFVWRQVHK,18.4019
|
45 |
+
FIATDRKWIPLWILNMMYTLSGMGGVVAFSAFLAITRMGYDIKWTGALFVAGSVIEYVEKLFPQAGPAGTLVVLLIPAAATGHGMLPMICVVCCMRIGFIGWGAKILILPLLGNGKLLAIYGIRSPWGVAFTVPAVLILVAAGLVFEHTWKLVVHAYDIGFLLTALAVALLALSKLLWYKEPILYALLAFSVTALVGFIASAAGSFFVGRGCTTCQHPPSTIFSDNGRGKSVWTFFLAIGVTIQLLALFAFLPKVGTHQTVKDLFNIIGTGDITIMLEQAAKAKRRGVYVLNLFNDKCPKSPAVLDRTVSYLPPNVSCAVKATKDTNMPLVTLTDDMHFHLEDYGHRALQEFPTLPFNHTKCYLSQADLYLTGTDMSGIILVSLNNWMGEIGHLAAHTLECPDERAVFSLPIGDDTFKYLLYHEQTLKGIRLFSHLLSQSSRQVTEGAGGRDILMTHQTALITLRSLIAAEVFVMTNGTLKLIPIGRTDVLWEYRATAYHDCTMVGIPSTNHLTWDGQVVESEPLWPLSGYMSLKTGSVILVMIDTVGRTTYMLQNCIIYLGLLTVRLPASVATMEDRDCVLMGYLAFLVKTLLTEKGYCFLRRACELIAIGVFAAWFMSIKYIAVGAFTGGILPWVLSYAVLGMMFIGILYCLIMFRMGQMVERGIVVYGRSDDVSMQNRLPDVADPMPATSLVLSHEMFSGCLPNDVHFEIREPVGVPMIRFFDWYGERVLPCQQPFKEVSKLIALVLQQLAHMHEKNLDPPIWNVLRIHVTPARPFRGLGAMGVNVIISYMILILVKFLGITISEKWL,17.7597
|
46 |
+
LFKSSKINSRNPISMLNIKMNLGSRYQVLAQIQLSPNKINSDDDTISFCINTENLLSWFLPGDHFNFADLRVMWALLIVTIICGGILFATLSMLYGIAPTRSTTKMIKINDQPAFKLGLIRTHVTFSSAGILLVGVSYNLSEELVKVPYIRGGNLYFQFSTPFALEFTSICFHNSYEPLYNWLAGYDPYTGTEVFFNFGPFLAAWGAGVAGTIALVAHACVAVELFKQLKFKIKISKICSTRIILPVALTGALIAWIVPLISSPDILKTTGKNIHDGDTLIMIPVLLKRIFAQMGKPESHSIEHALAHNHAAPSEAQFRLAIDDSYYNQAISTCTSRELKPLLNRNVVRLLCADGKKTIRDPKRILESYCEAINRVFGGTFKDFLFGVVENSKLTKFFKYFLGVLDIADLSNYSNGALTTEADQFLVEFLDIYPEYHKFSQNKTYIRK,17.6359
|
47 |
+
FWNWRRRFLGFLIGVVVTLFFVEATGTFVDNWSTIRAMHKMTGMTFGDWLGTIEALLTFGFLIAHLTGGGTPFGWVDDVFVVVTIALFARQRIFRLALVGLRGFRLERAGSTLKAVGALRPLSSTRKLAAWLMGWLSMLAFFGLVTGVLVYVDVRGNWFETAPYTFETVTVVYNFYQEHGYGDDALRYGLALSVLAVSPFIIGILGISFNWLVVPLSGWDYD,15.5532
|
48 |
+
TLLICYGASASNYSDSTRANAYLNMPITLSDVVVGLIYAISLGSVFQVDAILLAVILGNIVLGAVAFVVASAVATALERLVGRVSLIPAFETAVSGSISGDLSSYPDLYKRTAQSVIAMAIVGEVEEQVRGAENAGEGILDVLDWQEGGGEARTTLNQIGDGVLQGVNIGEEELRSLKPLEVGNLDVASDVTDYDKAVKIDIQFALRRARAGGDVVLLDARNKSSIDFGTDIIVGTAGFGPVGTAPFIELAAKAGFNVMVRGGIEDGIALTDIEVVKHARIKGVAISGGTTASIGSAARRIGRARISVSVGKARFQSLKKVCDVAALDIQETFAVEQILLLATGGKQIRSVSSAIGKPYIQGPDGSLGDLLASIENTVTVVSVKQNKAAIINDLGPSDLASIEDRTPEEFLETTEDDVAEQNDCVLMNALGLNIVFEDNVVLIMDIELGEFIPAGREVQLLNSRLEKKQSKLRIAEVLLTLSSRALPGITRGNYDIEYHDLAAFALGFQPVFIGSAAREGTTREALIAAIILLLESLILAGMAILAVGVRKLVGFQVQPFSGLFRAIFSVVIGTAIVGLGLAWAYGPLHRLGEEEEVAQTKVGWGGSFALIISIVNAVLYLTAAIFLIILLVALALFFVVETIDHIFTFEIENTVSAVDTFLAGFGCMTPQLQKFNRQLHKIPNFFHTLDEFKGLMAHQDIIADFNRSIASLFLDYINAVMIFLDGEIATKILRALDAILGGVVFSAIIIGAQASVADSIITGRDITLELAVALLLGAGLAASVLALGVGVTIAGVGGAEKTASNEGQARNCRILFYFCVGCTSVIVTGVAVAKSIEIL,16.4406
|
49 |
+
TLTFMMEGTQAWIPWYIIMMVYHLLTQTYNMAGLLLFGLLFAGIIGLLASRPRLFDLEQRERINWTMQPLPRALTLVIYMLLPFSSLVVIFAIAEATTYSPPKQDEHPHRLTTAINVVVAPPYNFDAGVSWIPLALLGLAVALLQKVQLTPTNRYNRLFKLVQFSQININLYSGKAPITIAMDSKDTYPIDETMRTFAVLRETSKKDTVYIPVEVENCLKGTESLYPAADTSVNLYLVHGGQNHFATKATMHSIFIVPVGIVGPFLAVVHLIILGIAEAGKREEYYLLYLFGYLSVLTLKLNGTAIIDALIRDGIHCARLPGRYNVLNYVVPKVSAEMKIIQDTLIYWEPAATQWETKLFDKSRILRNSPGYKFAKLLSVHLITMAAYCTLILVLPTVLSEYGQRNSGPEKRVLFSCRLLKSRVKGKSRICFHQVPGRKMTDTAKKLTSGVKNIFRNPGYKYMESNEILLIYTINLDYKNNALYENGPAIQTAAVINNNHAGTLFLQDIDVIPNLMALSPFVFLVCGYAPEDTELVFCWVLNKCGGKEVYIAFSINRNQIEDPLSKLEVIANNIIRVIKDDYNHRKAAAKEYAEWIAVAEASIGTLPLSIAKGFFASEETPKELRMSFILRAMKQWLVVRRKHKHDCKNMDFKQRCKSVATIKRKPMEQSLCVPIEKHQPAMRKYLIITLLEQNLDRWAHEAERVTSHFLPFFNNNSETNCHICECLNEYYQDAELLLQNAKISSGCNEYGAIYYSGIPISGAVAQKMTNIFISGSSVVLLITSYGGDE,18.2811
|
50 |
+
VAQMEFPEGTTSSCIWKQGYHNPAVVIQQLTLHRCSASSDTICTLMTSQSNSTQLMDDLLASVLKILVGLISSDYTLIDVGGFTVDVDSLSLVYRNFHTNISPCNIDTVTKTPDDTLTFEQYRDDMRAQVEQTYKAYVSADPPETRSVKASSYTHVYRPIGMPHNIIQPIMMIVEDTPQTESGTGIKMCSNQRQDVVTGNPVEAFQTLAQGDHYKLMDSSTNKSILAVSNGWNLCLGSFDSLENNPTITDKEGEKHYKFMKNADDTLNSYLYLNAVYINDPTLPVTILSSNAGCKGLLEAIYKNNIRILYDSYPAPNAEASGNNVKSIGTITVASCMGKGSMCPCGDDYQTLAVAVSLVNYEYWDLNGSKSNNNVIRTSGTFSIAILTDRGNYTANRSALLKAYINLLENYAEERKKQIKATIWLYQRDGRSSGKKEMSCNDDPSDTGYVAAEYPGAAQVLDTDDLETMPGSILPSFQNFAQVKLFKQQYKGKVPVKWMHGYVRHNLKANYFANGYYFAPSEGSIINPVLGGATE,18.9275
|
51 |
+
TGPYKKLADWNERVPTPSITQYIASHYNYPDLVAVRRVLRVPVAVDATGKEVTVDKQDCFFKSDGVVYTTNYKSYPKTIISESYFAYAIPGDVQQKMHTIPLTSNVYKDDREFFQYKVSFQFTPPTPPDIQYPARADNDSEGVLDWTKEVPWYAKDCNGPLAKCYARVNTDEFYESSAARLHPWDFPWASRLHIPAGIYYR,19.3561
|
52 |
+
SRKILPIVGLIIGIFSVIAMIFYVLLKDKNHATNIETTPADVETIWNMTGLLSQSIEKAYTNPTREYITHADVLEQLKKTFNFDSEILNKAMNTVTQYMSENQGDAAVKLTEDFFQTCAIETQTRNPGQFASSYGPDHKLAKDQATDETIGEDNKSPFNDPTVFGIMKALLASMTNIIKIAMETLNLFTIESNVIQLLPLVHAMNPRSIEELRLTLSYFHKNLNVTLEEDRQKLASILEILRHLLQLFFLYLFSVQDTLQNWLLNIHFNPPLETIVPTIPPNDNEIAQMLIQLNTDSSSHLITILDKASPKMHMIVLGEQILNQSLKDFTDGLHSVKDWAEPTDVLTRLGISPIDNPMSELSKLWQNVLLYIKHQFTSISNSSTLIGQLKTLAHVRYQLLEIKPALQSLASYYLNIDTTMIMSYNLYAFDELAIKENLEEEEIHSKIPEEQDYLDIIAQDDLDLYLKNLIEYNGSIDQQARNRIGFSVISFVHNKLFEILPWLFGKDQRTIKIGLVIKNIKGYIPGLLAGKMEQIRNLSTDENLQLNDKLVVFSGMKQTNGFAKLTLLNMSPLISYYFSSKAAGLTWTSDFIPVLKISQLIALLQVYFLVMKSKTITGKYMLRYTDTAVKKNHVFSFHEVAGHFEGQYSSPLNAFFNHISRNTIPGNRKIIQTYPLLFGSLLAVIILLLILKLSLYPVKLNLATLFALNIVLVTAFLVKTGKDRLKATALLLLGLAYAADLLLGFKSFGGQGESSSREHKLANLIIFPLLMIKTIFVIVSIFALYYIG,17.5915
|
53 |
+
TPDSEYMSQTQNRYSENTCNHQYPTEWSEVIDHTSVGILVVSINRFWHQDKCHQKASFLREGAFFRAGILLGALSVLLCFSKWSVPPIPLTLLINVYVSEQWIFLGLFVGDNNEIANHYQIEVLLDFARPYKRYAYEILILFSTHVIIAVVFRNLVVYSPDSLLISISQTDRLQHGFCNLSAVLETVGILDIIVSLFLYSLAETSVALIIGLVVIGSAFAVHQAWAGMWIPGRNTSRVLREVKWFVIIFVAGRCTLWFYLFSCSQNNLIRQTSMHVFVTGLQICHLFQASAPHLVSYLVHLVVRFTQISSVLRRNNVYYFLGAPFTSSSSLIGGIAICVFPDYSGFEKLIFLSENAILMIASNLLLRDGPRRAFLVAREHQEVTLNWLSRSLIWRKEVDIVLMGLLMLLLIVATGNIFTIGEIARVVSSSITLNSVLSLIYWFIFNGEHVKPFTWVSLREMVNLQLNLSVMRSKRGATNRLQKMNAIQEIMAVDLSGGQRRAVLIARELAIAPRLVILDEHTATIDTVETSVLALLSPLLRKGTTAIVILAMHGRDLLHQLIGLIYLNMRVLDYLRHKKWNDMKLFKAMAELLKKYMTEPGFLRWMDRLLLYQLRNQTVEDLKFTFVAQQPA,17.687
|
54 |
+
PRSRLRLFMLRLTGMSAKGASPTMLLGLGLLLPPVTLFYGGGVAEHGLPDPYALGNVTIVFATPSVLQHGVHWPIPELGIMALLSFIPIFAPEWRAPTMMAYGLLTGFLLGAIYGPPVVVLPLLWGKIKMWWKLAQALLGASQLYFTIQTAIPLLVTTESETYNPDSRFVMQLLWSHIHTFIPILFIIKAFTIGLQPLQMQHQPGIWALFALTMFLVSWTLARDPYITPDGYFADQKAMGDLLTFNLLQRIPVGNHPALSPPGPYSLLGHISTQIIVAPFIWYWRSA,17.041
|
55 |
+
NGYVEQISYHETITSDKLRIDCLLDLNLRFLAMVLKLDIKPLKGELFAAFDCAKMWNCPVERSKDGEPVNQDFVAEAQLRGKVFSCVIIEESQSEYIPCSAPSTVSLEICDNLGKMMPVLRATFQLQLNLGTIMKSTVKESDCRLPAYHLKLECPNENELVGVPQPGPVRKAIDPISLFEELAAHIKFDKNGERKFVQILSYSKKPIKYSVKFDFCNSAREERLEVASYKLEIVSLQEMRKDSTKERSLRTMILLQSSTISFQRLDMYLYKILYLCFLDTKYADVMFRFGVLADISRLCSMMPELKGTWCTGTFVWFIKWAFKVPTLNLGGQDEQMSQFLRYMFKAKKMVIHDPPDWKMACKDSFMPKRNVRLTLCNQKETSTRQALIETKLLEEICTDVDVVMRGEENTVEKSNLFWLVGDSKTVPRNDRLLVGLGQTRNLNASKFEVSHVNIPPGATAVETHPTRIVKLPQIQGALLFYLLYNCWALTPWFRLSKLETVTAITFFSRALYAKLYVTNAHCAQDMLKMCTAVRQLFSGSNFGYLMFHKLITTKQTMKKHFNVQQILSIAVTNVALVVTVGQTECVRPSIFSYVQTVNQAKAIQGVLVSILSPDQAGLAILFIEEGLTRFVLVDYLKMLGKSRQSKPFTLIVGTKETLEEWALYLTGEYVPT,18.533
|
56 |
+
SGSFNLTNAIWVRKYKWYELAPLRYLGRCMVMDKSGNKHVILSQVGLLDSPGDELIQGANLPLRITIVDGDDNDFFDQFGEVFELMNLGERAEFNNFVQPADIATTISVQDFIRYSRYLGKGGTFVNEFRDRYLEDGRITEASVGGGFIANLLDVEDLSLVPEREMVFGEKERGFSEAFGSLNRLVENNFSQENGRAEYLAGSNGSSYTTGKIGYVTNWQSQFVITRDLVSMGDFTQKLFSYHQGNIGSYRPGFEKGARVKFGDPIQDWTNGSDPVTSDWSDNYGFKYFVDTPTSTLWRGVVVSNPAIFNMDEIGKNLKVTSLTSYYIKADGNIGRGTKVLAGNNYQVNFELIYFGTTWTLFDANLYYDNGDEWGLSDWTDVVYNSMVAAYQAVDDGHMTISVLGTIYVLMMLVSISFGTIYVYDLYTAMALAASGYLFTRRGLS,17.983
|
57 |
+
NDIRSTTEDVLMPVPKDLAGKFFIIEESVVIATETLQKDSMISFHEFGMGSADVYYTVASRPQYISDSTLSLNDTAISDDVTVIKSIGLTVILDLTAYDVSRVTMADRQSYEDREKVSYREIDLFTILVAEAFSCGILTPTYLAERLEQLGRIDIHDGGWNKTINAYELVISASTFADGKNFSTAVTIVPNLPAVGSEIGRIKANDGDIRDALGWVFGETTEQSISPVEYGMILITHGSPGGLLTAKPPLDNSVQEKLFQVLASGWKRGLYLQGGTLVSRAAYLGLDHWLKLPRGLSIIDVSMIDNSSLGIPLYIRYQVSVDQTDKIYEGGKPIPERMDQNRRSFFGTLNLPLAITQAKNITNKSAHNIGQEWWLKIFFTLIRVTVCMCILGFPHTGIEASFMFYLCSQYYSHWFVKWGLEVLSWENVMSVAGMNKKPGFEFALFSDGVILGVVLFTAYIVILFVIMLKRPLMLPIKRMKFIGALLVWSLSVVVGFLQGSPRDKKKFLIKSAIWAVFFSLVAFPNVFLWFFTWKIARLSANASVFYSGTTTMFLSLLVTTATEFSVVQYTVFLEFFIMLTSGILVLVVWLISSQKTSSVSIT,17.4521
|
58 |
+
KARYVRLVVAVCLCPFVRYLEIQLQDELEAEAAKKMQLVGREKFNAEKLTTEDLIAVDAVGRAMAEAQMDPATIQRKIPGEVPANLLEEQLKSFLLAQEAKLEARRRRKKLQASGSKSNRVMARERQYLKRCDCSIDEAKRNLLDTTVDALAARSTIREDILLADSKISQLADTSPGIEYPNAFPEQLPYLKEEYYFIRTSRFAFDERVHALQSNLSLLGFDDDLTDATKAYTEFGEAFGMCLEKLDISGILDFLKFIPASSKWNPI,17.6976
|
59 |
+
SLIGDLMSDFSGYAEIVTEEYMMKHWMPLGLIDSENTFKYSYQAKMGLAGIENTGIDTSYVRSPAAGKVPVLPARDAGQRLGFTQLLMDLYLNSPGILQTLVYSWMEVQASWMRETRFGSLSNEFETTEQYLPGFKKARAPLEAEQIPKNGGRVPGGDRIVGVFEDSPVSGRSPEEHFQSFSILYIKWNAFWFFSVQCILTLILIIGFLLTVDGLHPCMQPMRYLSLTEFLMEFEGWVVSRRVVYIRDYDFTLTFMEIGNVAGVRLESYHWFLFWTAGLILGSIFFETLRHYIGAMGVVFPTDPPPSEKSDTFSGVTFIAGFSGAMRVALVYTAPQCCRYGEIAADVGHILAGGGGGYDQSCDEYLVIYPLSGGGWALERARKRGVIVFPYNATPWAGILERFLPLVGTARYIAFLVWLISLAVIIYGVYAYALIARKNPKGLMNEKGIKTARLATGWSWFILIKGLINMLPLRGVGTKVFLSQIVRWLPEYALGK,17.7286
|
60 |
+
LSFKIFIKLLIYLILIILFILSLFCKTTQTIGMPDLFVKKVDWIYTTYYTFYNDYWIVSVKGVSVEEAIRDLETSFELSKRNVMQLVDAVVWTEASDINPGTDFYHWQWKKLLEEDPLFAKTERLTLVTTFNCMFLAWFANVYALAITTMPTGLFIFVLRFFLLIYALFASISGSGYKDTWLVPFGGAPIRGNLAAPTGRKAFLDCLEYDIVVTNLGAATRATASVLITLFTILRLFTGKWNMIVDVTVRRVSMDCDEELAGATSTTSNMREIERATDVFASVCQLIRSFLDGRNYSQAVANMEYLLRMPESKIMLAWKWNEQAQYPVFRYFVLDAMNEMRVMNQQWMSELDGLFVQGPLRNVFDYLQEQVQQLRVAKQNSFMRFKTKFARGKELWNVWLSKSNNLCQCSDEGLTTLEVAAILLAVCWMVYGFTGTIRIITEDATPKSFTGHLYYQRLHYLRPMMQKIDNNPLVSLLPPRIILDDSTNWKNLVPELINVYIEPLTIPASQQVYELLVVLHHISPSFSGWRRETMVRPNFATDDVGWMKMEVSFINYDQVFYLTEMYPFSQAPFFKLLSQLRIMSQANFRVTIADLSNEIFNYQSLDFEAMKALDHLYQDLGPIDFLFVNTVLVRILNVLRYIRFLRVSRFILPYLRKIARGVFNIFDWYNIVRILFYAFGVSNLLSTIMCSSEPNEDTCDIMQPLDMYLTIFVLDLMLFLSYPQYGFIKALHGFLYHLNTLGTTMFGLAKNNLIYFTLVFSILLILFLGKILAFYAKRNNLEELIR,18.0488
|
61 |
+
ASIHFVVASLVATGLVIGTLIGNLIHSAGVAPVIAIALLIIFFCYIFHVMTTSYMNSMSSQGPVDAWTCVGQAIAIGISGFIAAVEGLVATIFFAGLAGAIISPISIYLIATIAIPLTIGLVLASLLVIVLKHICKAALPSVSVVKGISLALTLLVASSLIWRAADSAKCSNCLTASSFVHATFDAISYGAMIEVMAAAASLGEGVIVTAFAVIIALVFVEGLAFALTNIFCGLFDG,15.3219
|
62 |
+
KWLKSKEATKRARDKVYVKIMNRETPMAIYTGHHTYWELATNPVVPDKRFVLGEVCENRDDLPYYHWIEHFRSAIDKGARSKEDEGKDRKTSGIYTFRPLTQYQREEDMPTARVQLVCKGVTVEGMSINEIYFHIIHFAADDLNDMAAEVDWGVTEVQLDALVDEPSECEIVTDKKSRPKHIVITTNDKDLPTVRALVDKICLAEVGDHEIQMTRCVTEEQESYIKYLSRHKSDAVLMAGGAISDIQNCSEGRFPITYTDVCLKDDSKWSSANIISHFRGFEEILAEYINEQRWLNGVALRRGFTVQGVSDENPILLITDIQLDDLELAFRQNSINQTSLVSIGSHVLRDIGYFSRGQWGHEGPNQYRTRRHASCWVLNVRHNAILPTEVVIEDGWIHSVFTLYPSAPPHPLGYVQAQWRGFNKENVKDIREAFLKVRDLEWKRHEEVGKLINDIFNTMGYAGNTFWEAHFKRPLFSGLGRIKEAIRRKLIFIRTVISFENLKALVIAAVVTAYLIMAFIILEGKAWGRFEDYGNTTSGWFNLTGHVPRYRYFINEFCLSWHKQTRCREGNFITQIEDKLQACLKFFGDIINSYKGSLFKHSVWGLCPDIICLDKGISRWNVDWSPERTKEICGINPEPRASKSTWRSIQSICDLFNLDGDEYGTYDIDMRVRLTHNSTTPCFPISIGLPCKFDSAGYWTLARIIFEKYSLAFLRRIQIFSPGVAEPLVMVTKGLNTAFAILTLGLAGGLITALYLTFGKPMEGWIESIRILVLVLSLFLVALVLSGVTHGVQYRTFKDDRIKISVRLWVFTRRIE,18.7487
|
63 |
+
QEETPSSDRFICKNIVVLSGVAAILIGLGNILICVTTKYVKVLRYPNLRSVLTVVALAGFVANGLLVFIATNGSPTIGVSWLSMAVEVGFAVGLLMCLATTNILADNQNGETGPSDNDFLGSTQAELVMKGNKVAWWPMGFFVVDVYYAKLFAGVNNRILMGKIKGNTWEKNSWNKPGQIMAQVFYIIMTIAIFLSPLLVLVPMHRFPLNVVATSVSVSVLLGAAFTGLPDVMNWCTASFGIRYLGFTSGLAVKIISLILRISGRLGSIQLNFAEKLGVLLVSIAAGLISGIVWIGGLLVQLFTFIVDSFLNTKAASDQPLDIIIMLWFGITWHVLVLASCTGIFYMYNIFILGQSKNYGSISAVSTGLITANQGVELKGYPLASCCVFQITNMKVHEDIKECWTLIENCKDERNVHDIFTITVMHGKKILLTGGNTYRGVEIRVNEAGQVVPNHELYVLAKEVVYSNPRTLTSVRVAKNVELCGLTVRVADKAAMNSMLDKQISNLVHLGMSLHKMEKNVVLSGGQRKRFAIARAMISNNFLVLLDEPTSALSTSGENALFTDLPVKENGTTLVVVSHRITLLKFGDVVIMLAHGEVRVHHLCIYTKLDEFSLKIATYFMRHIGYFLDIVWAFILACIFGLAIFNLSVFGYNPSASVKLVPVITLFITSFLVAINQFFGQSAKGKLAYMHHMVRRDLFGKCH,17.4792
|
64 |
+
WNRAAHFLCMMLTFGVTTVSITTRDTYYTGLTKAVKDMSYTNWLIVFQFKMDTPSRTPWWRFENRWLNVPVLASVIWRGIPELFYGSTLVDHFSGVWNIVHWKHRLPTFKRLRGINSDYKPPLRIIIFLSLTFIPDLPRVLIVLGNIPKVTVRFFMLVMTCQPQTDLKQQDGFGFWRYKKPTTANEHNWKELRAADRPLMTYPTTAPKHMHPFGSLLFYGLRVATDQARVYMNEHPTSRAFLNLILALLELIPDPSG,18.5118
|
65 |
+
KDFATYDPTALSPGANRRHDTWKPMGTATKVERLLRWGYLTFAMLTTLTHIVILVFVPFSWSVWGNMRYGVEPPEMKDQGVVKFFLLVFSFFLHTYVLFTALR,17.4756
|
66 |
+
AFVPITKFYNLRREGTIFKTPELRKMGIKVWLVDLAVVPVAKPGVRASARRIIAYILEFNKKASKLIIRVDASTGFFLTDNLIGFAFKQGIRKVRFITDAPKSGSIIQALFGQHDVVISGADIVGTEFEVGHELEELDIAIGIGAREATRVFAAISACVPSQKIIGGGGTVLEYCATTGSATKGIFLIRGWMEYVNLLPELVRLSAVFSMARLMSTSIHIRRGQGSTPSYAILVGCFVLWIGILAWLVGFFDLSEQEWLFTLPILQLGLAAFAGLGLAIIAKELANITTAFGVLAADLVGGAFCIGGFNAMVHKLPFLYNLTVGIIGLISLAGYIHIIIGGSWWPGPRDREGVLANFFWTPTSNENEDFDILPLEAEDEKTSIDNPSKGGEVNRINLFDDQVLVKQSMTPCGSNWPHLPFVFPDWIMNNLFKAIFWKIVEGSINGAAIIAEDAIARMKVHVKPISYVNESRRFLKLAAFMVHVILEIYVFFCITLEFEQNLFGKSNGAGVPKLLILLMIALFLLAAVGGDITTKWATDVVQQLALYLTPDLLPMWWFETALGDAFECERPGIGTSVQYEKTAFEDKGEPTFDDTLARLIPEVLNVVFPETSPNAVILHWVNFLTFMLALAQSGICVLTGSFFFNQARSLRLCQFQKVTLLATSQDQSADRIVAVLKKWPPEKSGRVAYVNRIFVQLLVDPNKMRVLSGLAFTASVEVLSSVHAKRGAFITKPFTVIFVLLLVLVPLVGGYAFRILQNNFHYLQLLCFIDRDPNLNY,17.2646
|
67 |
+
SVSDVDVVKDKGITHHNTIVAAQSKIEIRVMSVAPVTVNQKGTLILDFSNREPNEISVTDKSTAGNCIYAEKHYKKDCVLAEEGGKVRLAGVGKSSSQSVKSKAAIAVQPQAGFACGQNGAGAFQREDELWDELITRNKIAATVALLLGGVMGKTVEKVNSIILLREKESQYIKSIAVQIKGGDKYQICVALVLEQDVLFHGVDKQAPLRNLIIKMKVCNTREMIPKIYETCKDAGKTDVATEVAQSHVLREELVAYTEIIVGVYSPNLLEVVYKMIPDDSVKLELPFDVNGSKIMAVDGKRVLKEKFMFGWAIGNRFGCIMDGKHEKVEKDVVAATLMGIDEPGTNVSELLKYLSYPRAVAAENTLSVEDVNMTMISNHINLGDVSKFKRECLALMDYLRSISSLVTLYNSENVSWQAKTKTRTFGFSFNGNGFPSSLQLVKLVTIIVANYDVQYAWYTGAEESEVNSPERFGCCYKCVRKPIRAGCKTSKMSPTFIILPEKTWEIDDHNLEYRCMGKPALSITLKYDRDDDNSKEDNKLYALAVGLVDSAVTVHGWETFQVSCWIPIPDKKTVKMPGFSDLYLAVSLCFPMDEEKKLRLHAPTLPEIVFVTHASTYIGDEAELVLHILKRNGVCKSLGFEDNHEIWSFIAWISQYHSTNWRHSGSVVCGKIRQLLQDLIPSADQDTQVQAYCEECKNQENANIDDSTLMLVIAYKNLQYLRAGILPDYYTFDNIIQVGSNNVISGAAMHFLDQIEPFFVANTDPQKNIQLIRNKEDEFYWRFWAFDAYANEERTSNNRDIAKFEIATKTIPRLQYERKYSEALEVIKGFSIAYNEKY,18.7321
|
68 |
+
GENFEELFARVRRQHPEAFFLYLPVILIIGTGVAMELFPFAKKYWRFSSALGRAFLILLLSILVLKLLLGKLDEFRIESWALADFLHVVQAKTAPISPTIAVLRYFRVFRALRDNMLDRTHDLSKPVIGYLFMAGLPILLILSTAIELGVIQLDGLTILPLLTSAAFWGILPQRVTSGGDGSLLAVLTGFAPSLKEGFRYGFIIGLFMALLGFIYTIAAENDNEALRQG,15.1469
|
69 |
+
PYVRSGNVLMAMPQWLQDMKKTLSSKRSQKELVKDGDRIGQKLVKERKMSTVAMDLYWMSLMLAHPYAHPVLSGQATVYHAVGDGAVVKVHDGDTLFGVALYFSENMWFAFFNFAPGMQAPNVSSRDGSIGLWGHLLPAPNFSFAQLMMIWFVVIDFLAGLSRLLMLYYYNLAKTFRFHLLFASTVSFLEVQAVATSFWAYSGNSALLVMVSFLITYTGTTFLAGSMHATGFYVIHLTDILSQHVTFLMTLIEAMNSHQSATSMSGSRADGKTTVNIMLYSASLLNFTTFKGGFAKFMCYISALLWLVILLYAFVDGAACIGFGGRLRRFSHMAIVKDQSWKFYVTQKGPGIIQAAEYMMNGPNIAWSFVIHVTASHHRGDIIVSGGWIGSLLPMAMQFAGQWAPLIVRAPKNPRVLKLYLLVTMLPAGILIAITVYTLWQPVKKRPQRPSNESNMLIVIVGMALGAGTACLPFVLGEYNSNIVVAWAVSPVLVRNCFIIFMTVPQMACMQDTICSVDRGEHVTGLNSLTVVSVTVMSMPSYVIAVQTVSVSKSMLGIPFPFVELSLKADASLEQLAGPINIKDTVLKQCGAVVIILMLVFGILRLTFGGVGVVDLYSPKLLSIAEAKVVFLFMTITWGSGITNSTKVFD,17.7269
|
70 |
+
KWAQGYAVLEVVFTVPFVFILLFMFITTCILYDAKTDFVEFVLSIAFFLTNSGIEWKVCAVTASSDSQLLAVMCLVGLAYYKIYDYDCCDCPFSIDPKKREKTVNLKQCSQLIAFELPPKFVAREEVVVSQVPHRFKNSEIEDLTFELEGLIYDHNYPIEDGFEAWRVHFLVDVGGGEIGELAYPVYHAPVMSIGYISQRPIGIKAIVVRNQKDQMAELINEKDVLSISYSVGLSYELNEYQLTTIRNLRNSAAGLSGLKIAVDSIIGLCRTPGLFPFNLSHATSQAITVVLGKSKRFNLDLSKIKGVPALKSFARYAVKSVKRLIADADSLPPTLVAVFYKTGNVSTVKGLSPPLIKLNVLSDASVVPLGKKINGIGSTGAVCTIFNGVCWATTIVSQDDVPTVVVQITQFRLGSQLDRWGKRAQTSDDMFWDTAAGVRLIVQMGVGSPIATIIVAVRPADMYNNMVENSEEKLKLRNNRNRQADDEIYVAIRMTGGNARQVRLGLSEVQQKQRFVLDIPTAGLIFIGKEFTSVIAKVAGVYPTILLAERTPEDNSVSIYLRNVNYIKGRPTSFLGTGFNNSKGEFLDPFFTLDPGPQDAVNGLRIAKEPESHKILEEQHGPPCLTYNQHESMLQILKRARLSIAVPDNRVAD,17.9063
|
71 |
+
KSVVILVGCASSDPSDSIEFHFFGDNTAITKGRIGRRRFVVIGGPSADLDDEEGEYGATHVTVFDIAGSIMPIGFTRGMTRLYGISHLTEKPLPGGFVMVLPPGGWRELQNLQFYEAEKYIRLSESVMQDVNGGLTILEDLGDEIIKTSFPFGQPPDKG,17.3791
|
72 |
+
ESNISKIFKDPICAEFKKVLVSKIRPIKTTAVLAGLAGFFCGGGFFLGAITADVFMIGTIVMVYFAAVLKMSDARGYAWFFSFFSRFLIGATNFADFGELIRAFLKDVNLRKEKVHKGNYLALFGVFGITWIVLIMTSLLALGEFIFMVGDIFKQSGKKAKAKLNAEETIAIANPVIYALIMIISFLLSVATILTSSTGARAKRIQSKRRNLGVVLVGIFALIVVAILFILIVELCTSIGIQASYSLLAERLIGTSEYMEGIPNTNEYWNAQGVKQMLGVASLWHTKIYEWWNAIFGFFVIKLIKFISDQAFRDWKNGLHSLQIFVGLSVLSAGAGSISSILVLSDIIKNANTGSFIIVPVVFFIGLMINVAIFAIYYGD,16.4909
|
73 |
+
KTYSEDMTFLNTPIDRYDKPLIDRVPPEHHTYVRKIITVFLVSGILAVLLLMWATPQMHSKVRWLEAGNSPGVGRIKLDVRVPEIHPQTMHILNAILRFTKKQKDGPVLVEAKSDGDTIGTADEFAPLAAIARIEQDLKASLVVRQIVPHACSVPYPMWITEGDKAWDGVFYKVEECDTMDDFVRILNFMIGAEYLPGSNTTNEYCGASRKIVCFEPVMIRNGDDAEWKASVVVTMEILELVMQQVITCTDSAEDGFLISQKGQFVGEGELGILSVNLEKQLYKAVEIRSQDDRLKTLIMLIVSFIAVAVGAAMVSGYIPRRRYQVTVNKVPYRLQDDAPVEGDVFEHGLTEMRIPVLFSLVDKLECVAAIDRQFKLRRAERALVSFGTYLQQGKSLAQSWAPVFFGFAEYLKTIGVCIIDNVEGKYLKNTVAATMTLFLLFLCWLTMCFPLQHPPRLPLADFRYLRNLPGGSTTMLTVFIYAHGLDETLDTEKGFWFWSDTGLLGTNGNMSGCYFVSFAVETQAFVAMMLGRSHSLSHRFHGLLQYTTLGWAFFTSFIPFVRDRNFTERHYVIPQHTKASTITCQNKSVRTTDKPQARKYQEDLSHETTCHCQTVEKTFNHPRVKLTTVKACGEVWTECPVDIAYTLASELFYSFDLQGGTLLRPQFEHPWGRSNLFAAFFHMDEGFSCHLGRDPDMQEYINSSSYLLNSTNVSEVVLLEFCDNIPPNILLITATFFYGNMMGKDAIAIPYDEYVGKHAYELAPEAAVIVLIVFAVKFLLRPLLLKCLWAAEFADHALNRRSINTPTAFPVIHLFFDVSTVAAIIGKQKNYDRFFPQLAVDLEALVDEEGKEEISFLIREMQRFIDGVMVMLFMRKWRKRRTLAQLRPPAVSSPDAPRNCLNVPDREKACSLNNELKTNLAIAADY,18.5435
|
74 |
+
TDAIKVLVVVIVGIITYLLVMWYWSGVVFEYGPVFIFFLLITPFTGEEYNFVAIFDAIAK,13.894
|
75 |
+
LGRRRIYGGLFHVLFFFTAFIFLVQGLRDGGRLGVPPHTLVALFEVCVILVLSASYASTFYCDYLSTTVHIMHIIQQLLDCYYYHNTVLTDNNPWAIDPVTLSLDKTYEEEEDERVEDVTLNILKKQYWHQAFQFEKCRMNMRQEEEESWLLLGNPQKQCESCKVRVSDPIGPDSPRPDVTIRISSVDISRVLLILRGSESLACEDKVRFSLYRAYQEPSPLFAEEFTEDLRCIVHTVRVEENALDTLDASPELFYLPSCNAQLIACSSFLRLNFLLKWTERLALNDHFWANKGNLYHKSWQSVKEHEYVHFPYCLVRLGGQDLERVEAHEKKKPLNICLSITVPIYWGDPRRKEFCKICLETDYTGYDMFKKRRLAMIFFLMFLFFWVFSLYLVEHAGQAMKNKGKAVKLKEKLDRLLDCSEMKPKPIRDGNLKMLQMPGTFIDCSSDKGVLSEFVAGYLLIGVFFLGFLVYVSCSCTILLWLYWCIVIVWIIIMFYWWVSAVTVDLQMAKFARQRERKVVAQIELAWRLSLFWVLYPFLLLLFLLSYFGVSPLPKKVKGIGRAKDHPKLFYQLKILFNLTLLLFGSLGFNDSMKFPWDLVLFLFIEFVLMLYFFTVANSQGFSFLYRLTKPLRNVSALLIIHTFASFLSHVVKRIYESALFSMMLQTLVVSFFQQYVVIIYQVTATNFISRLIKTLKLNLPTFVITMVFAFLANFVCKLLMRVNNENYTFILMAVPLVVPSLFVPFTTLGLNSVAMGYFLRGFFCETLQEKAKQSVVKFKKDEPTSRYELTPTR,18.1273
|
76 |
+
SEKSISRALVTTMRYKVKFTHGQAVFERQYRHVLDGPFGERDVTGKLRLPPDPDRQLSLKNVYIVSAHFDPKGVEAKNDYVSVSDSIAKRAACVIADLRHQGCRIMYPGTAKGVEIMADSDGVHLQLLLQATKGPGGKKTAIADLRVPLIDYDPMATIIHAHVQGGPVFLREWTVIPVYVQLKFKNDNKVKINFIVPGDIQPPLIQDNDHWDTNRYKDDGQYKFDLLPEQIEIRGGYEDIVIDPGFTNSFGRVLTHCNSDAVERRTLPLPLWKGLYTRHKARSQDICEVPVLDQRVVLPSSRVRSIPELAIEDMWTPSLSDSVDKNVKHAGNKCNMTNMKREFTGIRPGDFKQALLGLTCHTGREMNINCLKSVLKGNKAKTMVFLHGPMTNTLGALEKLNKENPKRKYMVFKAFHIDADGLSISLMISSSGANLPYSTGLHLLNPDGQIVALNVIAPISIGGQSVEHLQENLLQKVLRNNKAKYSINTCVLSIDWMADLTSRPTKLLPRLYGSGYSISDIVTSPSDALFDIGAQEFVAAPLMQGPIDWLRAIAIDEAEHEGMTMSNVVAEAIENARREYTLGLSGVDTSGIAIGHARETVGREGTASMPTSSAAAAQGFWWATSILNLPPTMTALSDMIGGQVVNGGSIVVVGDGVSNIDEEQRIMAQQMVEQIIHLMSVNQVSALALKNLIEQENNTVGQDMLMRPDQTAVSLILKTSAISELCELTDYVYQHSVVQSQRILVGPSGTAIEQRTSKAALLDKQLTMPALYMEGDAG,18.4702
|
77 |
+
GPVSNYTYTRRDGLRAWFAQTEPRTIAKPDPADYLPTHLPAREKLATYKRVVIERITNSMGYIEYLDARTFNYISSPDANHIIIETVKMIACMLFAIGIIFSVHDQVTATQRTAVALLVAIEVLPNGVCPSGTNHPSVFQKILTGEGIFCADVASVGAARAVFITPQVQGGSLLATKVIMHEQPRPTEIVRDPILNQAGVHALCGTKVEGDVRQSANFTISFYSYSSTEGINYESTQSDIYHDKSPSNPITLLCVRYSANGKRDLEDGEVLSRPVTTQVTHESDGGTEKVRKDNITDIVIVLEKAFPAAIDEFRITTIKILIDHPITEYIVVCNDPNPVGTFRLAKYILNTYPDGSVVVRHENTFMKMLSSIFIHVNPDPSRLLNVIPVTNSLVKSGRYVMGDSDVVEKDNMKAVLKPLFEKVVGSWMGNSTFAMVAGFASLASFVFAFGHVSTQYAGGIHSEPLSILFGVNFSLSTTWVSAFYLLAIILMGILAGLETLLEGEQA,17.9375
|
78 |
+
IGFNTTTLCVCLMVALAITLTYFIKNKKSAYTIRLECTQASNCEVINFPRGMTTLNSLPSDDIQLFHTYSAVRLALCLGGSLILGAVLKIIFTNTELGRVLHAKMLKNGSLSALAIVTIFVVFFIAMSNLALIHAKGSNKAAASIPCGFLTYSVLALLGVFMSKCWNRQMPMLYGLSKGHC,17.0854
|
79 |
+
NGQVRERMVVLALKDPANSDRINDHSMHIESYTFVYYPAQGGCIHVGIIRLRKPQKLSLQEVLAANGDSVILAGLGVDACSFPDHIMENFFEWGDTQQKMDPRVGPNAFVYDQAFLDEIEGHDLFFLREILDSVTIGNRLQNPLQIFRPYAQARNKITRSHLGCSVTKMMLRNLETVCTASFQTREPELEPFLQEMRADNVSPVLDLLEEFSFKIPPGANIVWLAPVAWPILQMVKRQLRGTGRCPEVNHVSPGDVPKGATQGTWDALDAAQLFIGGDSNIRGSRFFFQLCGLVRLFRTARVASVFTKADPLSRTALPEQGAGMERLVADIFESVHENERVANLADLDRELCDYPARVQAEEWARACGRAKSHAAYLQSGTVDTNVKTHAAHYVLKKEELDFAMGFQGKTLALSGHRCLVRKRVASTKPEIFTQLEQLRVNNPGIARAEYTELFAQGSFVVVVALAEFRNAVRQVQDDSLCQELIEKAQMFPRVLQEVRKDPTPKRLSFTLTLIVVGLPRSDFALLNDAFLACFIPNPRGVANVILDTNAYDLEDLTSKPEVIEFEGICDLRGVAAVAPKTPIPAPRPMEGGKMFLISDMEEDGKGYDVPLPYALGAAVVVAACDQCGHPTFGTNGIAERIVIYVYLHFPAVVALFNPIGWACFIAHSCDPAFNSSFCRLGLPMLIMVVAAIVSGTLVFTLMIVTETECLDSGESKQKALAGDMLIAFPLMGLLELVLMELAILKGSAPSSSRHVHKDDGFVAMSPLNGLALFIVLLIGTFHGSTTVSGQVRSGRRTDMGLQGITGRAAGVRGHHFIMLSRADNIVTKLVPPWATALMLLLLPFLLIAEIEMGAGPLTLMDGVRSWISCLLVAIATAAFFFLIGTFQWVLGYWHRSNDSFISILTALYLLINIAKLGFGFYLH,17.9518
|
80 |
+
VPISYDIKVPTGWFIDGDKVRYKPCQGLKVITLVNDWWIILEVFACVTLPSTLILEKQDYFHKRRCTTIFESVAEFTQAYQVSIQESTQQHLTMAVQQVLGIRNRVDRKYVILVANDSPVVCYLEGSKVLFTLLQGPKPSSTVLLGRNGKTGLLLRDVTYMKTNGFDVVGGDLSVGVKNAVKAGFYPVPLTQIVQLSPVLTQAFFDDESVTVLDGPIGGHMSNKVNSQAQQNWKINNDNGFMVKREARYLGVTVIKNDLVRGFEDLTDVLGGCSKSILGALEMRDASELNHKGISVVAETISNAMTLGVSELTCCTKHRKEVWLQRRLRGKWLRLMLNIVFAWQNDLFFTITFVPNIVHFQRKIFMPAEAVFNFLIASLLFVLIGEFGFFDVEWRRWHWRRFNMIFYVERYFLFKAFLANEVKRGIEEAKKLLSLAFTFVLISALHLVNRIVNLLADCSHSRFLVDNLIDLRFIDIYCTKKYNHMTFMLLLLAATIITFLLIGINAAMVCCARNDQVLQLIQSLESLFNLIAHLNYMTVNKFTFGLMLRMNAYSLLIIVNSLTGYAELRIASAIMLRLEQAFYDLMSRFDVTLNGVIADRVGVASYSELAVAILQLLELLVMEIYEYSIILGLVAIYFMVTIGCCVKTLKFQGLDAFNP,17.7417
|
81 |
+
IFFLLSNSQDAYADKFKILVPLLWFLLSVGFAVLLHWKQSIMKAIMFNLSLVAFLCWLVWAVSNFLYKLSDIKMVFCLFIVVIWVTALWSLSTPISYRYTVKNFVVNERITGMFPNLILFAEIVPAITYIYFLFTFLDFTYRLQALNDVTVLGTKPMRLIQVLLHLRVAIGFLVVNLVGTFYDETMEGGEVWELFNSLTPDINSSVTVIIAVLFVFFNFFFVVLTPQHTKPCKKADNSSKPLAILVNGVTLILVLSLGYFFGSLGICAFSANSASMLQAFSMHTTIIMLFKIGVASAWGQVWNQRTDLEVTDHDPPLFILTLLLAGWVIESTTNFGGDSEIMNLLGFLAGVLTSIEIFGLQINLPTFGSFVQDWGAIATTGFQSQEQFFWITYGLIFVLPVAMLFFKIFHEIIEFNTMLIICTALNASFSLLHLSRALKFETKMVGKKRCSADEEFGARMEDAMDGAYAFFSKLLNTLFVAVFRVIVIYLVAFFIFKMLWIFIPTIVDKTNEWSVGGFVCELLFSIAGNLMGIILLAAPNFKMWFLLDVNTVFLFVGLLGLINEISGLRLWEMRFSNWFIKFHMWFFLPLILLLPSAIITFSGFIGAFRIEIVYVFSLIGLYSVPLILSALRQR,16.9356
|
82 |
+
AVITQRVIGIVAVTLLLLIALAGGILTPMGETGSFRFPEVSWSVLTLLKETGWGSAEDGPTLQLGRLVTRAIVVMVFAALIGGWIGAILAWLVGRRS,12.8882
|
83 |
+
FISRALFETAVILILVLSGILQGMVLHSSAPITDDMELHKLLAKEIYTAFCIVAAYLVVCVGYPLEREDRLMIGVYGSCSAGPLDNVKEWGYRTIAPLLVAYFGLFTLWYYRVFGEDAEKIWIQTAIFVAAVLGMSILNLLVYLGRFPDAKARLSILLKDLAPNVLFHFVFFLINAVALMPFIYALIESIIQGVGIKKFIIEQNGVNVPLTIARALKIRIIDGVQITTPNQNIRRVSPTVDDRMGPETSRFHNTLEQDDSIVFIFLFVQDLKILGLGSQYFTLFINVPAFYYVIDIINVGFTVVIIFVVIELIKGRFRSLVGLFWVGSSIKSSDFLAGIKNFVIFNIAEVPGVLITTIVEIAWGADFNSAKITIMDAVLIVFWFPILDFAWTNIAFATTGNFYFLIIVAGLGMKKADPMLLATLIYAVLSGACTPMLEVIMESVYVVGAVDAIALFIAPMFLRFNLPILVTYETRRPNLIWLMALIYFVDSYHLYFKSWWFFILSIWGGVIGMDVVGLVWILGNYSTVSIIGMG,16.8602
|
84 |
+
KATQSDKTFPLEVSFGFTASSGNIVDAHAASMATYITLQAVADLVDSPTECPISKDISTEQKIWDCLPTVNTFTARTGRQAEIKSTSLGQNLGLPYFDSSKSDKLHVDMNADGRTISDTLFLRDTQKQMHDSRKIFLPNTAAPNTGTKDLIDEYGEGLIVNHDTNDASGYLLTDELDCHRPTMKAGSLNPDYPSILRGLKVNIEDIIQDENKVSGFYQVLSYLLSKGSRLKRTIKFCHERDRYIHSDNHKFVFSGIGDQAKMEKELDVAKATGVTIGLEDSMVKKPSTKGNLVGIIPMNGTFLLVPQDPLSGQYGSIIFAHCIGKLDEDTAANIHTYYKAWVMMGNLSLYDKFMSAKSFSALKVQLRVLIARAGYIPVLQVQTNILDLSITEDANIFEEVLSSVSNPFFGAKKTIRQIDHDRNVGFSVNPRGIDSWRNDMPIVLADVAGSLTLTTLGLGFRAGLSDADLCYYHDLLLEGRVDNEKNAVPEAKARKVSQTRAGLFKRLLLQMNGTDFSIRGCQGQQLDLIASNGYQSLKNLQACKKNGSVTLSISVVMRMYRFVADFAKNNEALNINKYDFLKHTDVWYYPGEHNRDIGDLNLREIKFKPFFTCDNSPRNTVAVFKQLYTLPLDGRYFVSTKRETSKLITGEIYSISEFGEHKGWVALANENPGLVSTIRQTGRVVVQFMAGKSVKDAPISKRIMLVPCDKVIVMYKSLFYRLPEQIDTCYESEEFYDTKKDCIKTALLLARKIGYGMNALGHDERLSALQDVLRTLKPCDVLTLKLVTDLGQATGNMILLIISVHRSKLRKVISILGNCEAIARVLQTMKVGGVDAVILLGNNINDKDIEPTVYVGYSIMKEGINVPFTGGINNGAVLACMIKILEPIPIFVAPARPFRYYLRALLGFLDLGVGYLSNADEKATFASSYRPGMTAKELLAQLAGELNIPSDLPRTMEIVKDL,18.0526
|
85 |
+
RPKTAEAIGLLRATMLFALILAFIALAELLAGAMGLPGSWVGLPVPLIVLAILLVLIGFFLGLWAIGGFER,11.2268
|
86 |
+
AGVCRVPEHHEMPTIFCDRDGNNGPILADNAQVMAKLEERQQGRKIRAYSSSHFPTRSVFLRMGSGALAAIQANEGNVRLLEFDSSEPRAPLSKESDLFGYGGIGQPNSPVKNDYKQKIFGGMIITGPPSKVSLSLSGYAQAQPTTSLGTLYGDAAPAENSKVKSLLAEGNTRWRFVDNTDDATIMAYGMRSIRFERPFGMATLNAPVNTDLAPEGRAIIKCPTAFTFKFTGDDEYYTHSPPAYVGAIEDMKKEKYRPPVSLSGKRPLVIEDKRAGVMDIYSFTPKITVVPGGRNDVYYDIDIRISGGIEAVDRQPMFMFAVAIALCAALAVGFVMAAACELMGRSPRKAGTQYRKKRILVLTSNTLICYLLSPLLLEATLIDDSSCDCDLDLEGNRFDVTYGLVSCDDLQFQTLFSFFFFNLIASVIFVELRHARRIYIIEYPLFESPMSLVGCVFLALFAILLPDTVADGSGDQPMTFYTDIYYGLTSLGEMVTAYRLINLATGFLIGIIVELAATLFIMLAAEFFRSSQHNSADPRKFQREQRSFLRLRRELLPTTSGVVPTNW,17.8225
|
87 |
+
NGKNLAERFVWQQLSAAPFTMIFTMVQIGSPDVTEYGWNFDKRALAGVYISGQDVRLIGGARNKNVTVTIESVVIGGYGRPSSTDLAGHEVLAYFSQSPARSRFTNIYARLQNTRGGYTAKFTSSFRPEAQTYETGALSIRFQGTADAPSHLQERTIGQLESDGTLTGDEKSYRTGINRGLIGKWEDAMAHTLGAVGTSGSALVLISGNHFGNGYAFYGAGNKSLTSKLVYDNPFTQVNTQERFAKDRYPDLTGLELLPENVQVTAVGNTSDWLKGSIMFAAGALAGLGSGQIIAGFAAVRNAAEGLGVALLIAGGTVVGSKAN,17.1103
|
88 |
+
AGLFPNELNELRRRLASDATTFIAPINFKVMLTREFQLLHLVFGFAVGLAWNLLMGQNWPFFPLIHGSADDLPKLTSFGVIVHMHEAVEPIWAWYLSLISVQIHSGKFLQSIANTRLVGSLNGMFPAWQGGKMIGRLIPRHKIAATLAIPSLPVLWGVTHIDLMPESLEWSMNLVEGDIALFQETGTFVDIFLLAGGPRYLFQVTFDEKINRLMRKRPILIVSQKIGSHHFKDVEEYAIAMRQGIHLEEAEINIPGGKVTYTPNYLAPSYREGRNRTVGIWQTFLDEAWESEAELAILHKDLVISGEPVLYPHQFRQGGRELVGKFFRLVTVDPRAFVAMQNGAISKEELVAPLITARERTSWYIFGIGAVSATLVATGPVNLNCTQIAYGPSLSAGLAHGLIFLLIAFHLYHVLKCSQAFQGLAAIKALNLIKPTEQALPERIDLDPLVLFNVGHTLIVTLFLYLSILGRGDVGLNLTMAGVVGVMTVLTYAKFRHCPIQSQSNLNMDRADQYRVIDGLQYVLKEIEKDFETATGL,17.607
|
89 |
+
WAQKLIILMLSVILGGLFYFSLLPLLHPSTTLRNAPIIMPLLVLSSIIFYWFIHDNMIHHFDWNFKEFRLISQAISLNAFAFGLMLGTPDTLKPGCQHIRNPSFILYYLVYFTWYTGLLAKQQKELLKSLWSFLIIDSPFNLSVMRITRANLIENFSISQGNYLGQILLILLTHHSPLTILSWRGSPDRINDHASKNVPIKVDNETDNGELDKLACGALWSYYSQLWIETMLYRPTNGTEKNQYKDFINLVNLESYSTNVTSDVREGSPKAALLVNELHTYVILNASVVLFVTSRRDYNSLKKRNEA,17.6565
|
90 |
+
KGYDIRSNASWLVTRADGKRANAVAEPSALKPGPQSGVGNILPKSRASYFILNNIGAKIIYLLDILDTATVGALAKAPPANTNRDNQAKFKFTATATGGASFSGTVPTDIVGIKVGPTAPILWGQVVGGGQAAAGGTKGVTVEGGSGYFVAGFVLDDKENSLLPNSENVATIYIIPRGNIIVNNISEKTGPGVIIAAEGLAAKGGEMLVARGNSQSSTVVDVSKKAESKSIITEELLKTAQGNNFRADINQLVTSLVDSWDLGTEFTVGLNNATPAGGIFASGGTAVNGKQSNAAVAYGGVQIPQNGKAYGTMVIYKGSSQSKLDAVKVRFSTTNAPEYWFLVGAQDQLAGNNTGYFTGKNALAFAAALAQTEANKVVLAALTNKDNPVPQNKSGVVAKGIAEAFTEKFTVDAVGTDSIVANFNTKLAPGQIVFIGPDLEITIAYNGTVLSDAVGNNAGEAAILNPNISKRIQEKVEIGFSPKKNIGEEYISANGSIDSIGKCAADETAEFSALASTFTSVDFLVKSEYSSYSSNNTFDRFSLRDTSFTDDSNSKNSTRLKASDSSKFYDNYKMVKTAVFNGVATPAAAALGSLSQFTGTTTLRLEFDKGAASLKGEKFSDSKGNSVTEKKFQDTLRVNTLGRGVAFIGVKVDSPKALVIAVAGALGIGGNVLLKGGKIVASSKLKALSAKQARNQLPLFGEYNFLSGLFSNGATVAFIDPLGIPATKAIIYPGESIPIEVFTKTPTRVKFLEKGAKLGNTLSALFVFTETANLTSSLLVRANPGVAGNTKPKNLSDTSAGTSPQFAVTAISHRLALTA,16.9213
|
91 |
+
VLGVAEKKDNDDQAQSNSSDDIKKADRESTLYGQISAGVQVGAVGTAQQQVTFQLGYASLWGNSKWYHGLNKRDAVASGYESLMGSMTQAGNGISVRGQNSSSDHMSSLNNNSNNQYAGDNLLFSGGNVIQDMGMAQSLSYQGPFSGIQYSSQSYTNTNIFWWSGGDNASDIKAKLVYKAVGYDNYLGEVPGEATIQVRNLKFANNGTLAYAVHSQILLNGGKVAYNGRCMVSNNSTVYYSKTLQSALAQTWYEQGLVDANTLLVSAQGKKSDLYSLAKQNIAGNRRASFAYGASANPSAQVNASLSNTFTDTYTYFSGTPTYSRSSFP,18.6621
|
92 |
+
VGIIMPDSAAAFSVAGSLDPLQQVADAIEEFAEKKLSHFDIDDTSFINIVSYTKQVVRALFVQPCRQMIQPFRDPYSEIKFVNLDISKQLMPSPRRNSSVVKQQLIPFGKVWNILHKVGLNIIFKDVTVVSIALALAANLIKKSEFLSLKMAGRSVGTEEKLGFMGFIFMNTENYTKGNIPGKEIVAMYFLYLQNILFHPPEIGSPEPAKYSEQSGTYPCADAAKKYKKYPLQEKFMFIHASIGVGDVGKKVFSQRPEKGHLAEMLGAAVLFFGENFPQADFNYLPSKEAEYNLSLALFKFGTQFVVNNQPAFCYNEEGNGWLPVNKLESNEILDCDTPTKGTKVSGHLTPVTAGWLHLLQNLGMMCGSRQAQWQVYPFHNATCANLQHTKISPMAGLGEAISTGGRIRPTYRKILLGIPEDHYNPSSDLNMIESQLVQLDKLKEYEAYHFGPQMYAQNFPEKTQLTRLMQLSILLSDDRSLARLNNKSLQKMTESPEKNVTKSVPSTITFGYASELRRKKDRTKNTWVNLRRKENGAFDELFVSQESIHSNLSVAEFTIDFKRNDGVEIRACGVLCVTDAFRVKSQFKAIHVVGMSSTTLAKVNCQVLSPNNVTFDVNNPQYLHRQQSVLANASTWPQFRWQGEVSGPTLYQLDSIGVLPKADPQKPKWQAGIMFVLKLCLYLILFCYLPFIGVMYLKPAIFEQSTPPYKQAEAMHLLICCIVIMLFYSLSPVNLQASKQVEGSGVNLLVLFMTLLSYWSNLFRWFGHLFLMLTIASSLIYEAVAKLKTITPKNLKSIWHIETWQVFEPFMVFYIVVYSVALMSLKVFVDTWWVTFFYSGPVIITGSILGHGVNLLDRKMPYSSNIKLALHNVHQLLLNINVMVDEFTGQPTSPFVTNVAEPAKRAASLIIIAVGDALLAYMLGYTVPLVPRPK,18.4627
|
93 |
+
KILLGSSITQSWLTYIPFVFLLVIPLFMIRHYGILMTNVLTILILCVGAKVLANSKGDDPTSVRNLKDVWQKAFATALQITIKYYFGKSTKDFLQSVSMIKADSTIFVRKAPSWPFNLSVATVRGATTNGMSFTLPCTGEGNGGFCLLSQEAYAVTGPLLEDVGVLAPEGAGKLTQAPELVVGKVGDVDSKALLSLMIHLLAKIGVATVALSLIKGELEQLRVEGTDIARELATKDSKDDNKGSSLATIINPPMNIIVTVSATKPNNTVGGRASRALTQYLMDAGTKVVISTSTYRDLVPKARNDSSLVKTILAFKEDRVPLEGIISKRKDTVELRVVLIRLIDRGRIAEWLDKDVKAIDSSDDVTEDLIVDSKPMVHPMRVGGTIRSDYVRNQTIIHIYEKEWDDLSRVIEEKQEMKEVPFMWIQSGKNMEDEILP,17.3175
|
94 |
+
MFFYSLIRTAPGTLPLRQSLIIFVSGGGGDGSVAEAGTSLGAPAAEVFHVTIAARFSHELFATILLAYCVASGDTLSKVVSDRAHLVQLVTHHVGLARLRMLVTVIHFTALCPFGGAILFTAPLDINTRQPDPDPVALWWYYIAPVTGQMTREFGGTIINPNIANSYHLVYFKVLFRHFVAEYVGWLHGPGMHPTDVLDIKAALKKSPTHGPEIPHYYSPPRVPRAIPPIFSVFNEIGDARYTTIYDGSVMGLLEKARTYDMEEVYTPRQVGYIFVHSKGHNVFRLVAELESAIGDLFTAYFDSLTSEDGKQQNMISAYLKGLVASHGCGLASAFSFGEQEKWRNAFNYLLWGRYQIESWRTVEAIGPDLLSFWRKRFNELKQAGVWITTSPTCWEAGSVKDNGLFIINSMKYALGRDAVWSANMPRVNKHITIEVKGAAEHQQIVDALIALVKDYDNLGFYSAEERADHRFFVAMVKEKGSAGSSKIDTARVWDVHLIRSRYFYYDASAWYHSAQRMTDPIVNRGYNIGLFAAIVAAGMLLLVLRVDRRKITCPFRISCPDERFSLKSHEIPLDGNLRVYGELKSELDHEDPFGDLTVFRGTDTELSSGGFPLHWEFVKEPEIGMLETLIQAVVGVYFTTSLYPGYADEPGRTEMGLYNMGPFGWWLVKYSDR,18.1742
|
95 |
+
SNTARSTQMVGTGIDINSTQMYPYNIMLTGFEVLIRLTPSAIENWQIRGEEALDSFFTSLSNAIGNACVTVFLMRILLAVYTTKSSAESDRAIGYATAGLPNNITAIVAQINAVVATAVVNSMNACLDLAPILYWETLQKIDNISNYYPPFDRDCLKARAMTYQPQEVRMDMPITVACQSGRLMNTAVRKETVIYAIIKEEPKNNFYLLTDPVYQRADTVVQAQYGHEPEFDTEDNLYPNKYGWIQYHEEYYEPIWWRWKIRSYFRTTQLETKTSLLARDSWEPFYASPFSRHIPISITDRPGMDHFMDDLYQSTPSFLTNAICCHNTNGHFPTELLGTIDTLRSALGGLDLHQSSHKSHLLLLRSTIRDLCEASGSGMTTQFTYLLLGNVYIARSDNLKHAFDANAKKGFKLRVIKGAIPPHVKMQVVIGASAGRILLMKTSKLKFVFSDGNLQRPLSEYVELAGDDISEAVFHAGKDTFEFEYEVTDDQFFFHFRAELIEPWKRENLYDNSLYLFRIGDKKFVRTLFTTLSCNKSVMLYFQKFAKLKITASKKKGISFTPDRPACGISVVPHLDKQFVLQVVLQTLMKITWKPCKKNRFQSRFVDHGGFFDFVTYSEIYLKLFAGENVVFTRMSWYAKLSTPHDFQPRSLVGVSTMGIFDEADGKYHLIGTGNFGFKIWRFLYVLDSVFSIEGMFAATITEYILWSGIVRYFRTFFTLEAGIPSHSSGTEGVYVCFKELIFEWPKDTPSVQISLAESTDPSAGIWIREIENRNQFNKVSMLVKTAVDVAQLVFTLEAFAPFEQSLNVIFDNEVDVSLTKALGPTASNTYESSQLALGNRLVLSEAGDVTALDRMVTTITCNTLCFFRHYNGITVVNCIEKAAAVVCIHITNPMPGFVQTQLGIGGLGPYICKSCSLAELQCEDRKIRFYSQIPGSAGDFFEDIAWQKRLEELKNLPK,18.5522
|
96 |
+
LVKVETEVKVYVRPTKPLPYTVETAYGGSPEQQFYNIRKLEPGLFADMGGFFTPPMSTASLGSTYQIFRQIYDGTLLWKNNMSDTDPNNVYRALQMKDTVSSLMFVLVLPGSDVYIKLGLVHIEETTKIDGTPDDAQPSSTDLSPGRFVEEQEVMSEDDELALLEDLRSLKFVCQDVLKRQKRHIFNNASITESLTIAFALNNTDNRLSWLMYLWIFALFGLVLIILVLVAGFDIWWSPTKQYGMIIFNLIGNFSSYKTMSEASMKSGIANVGQAWTTIKTVTAVLNNKALVVVNAGEDALALLKSLPKQTDAMVGHIQMTDRAIGMKPNDLWTFIAPIGYVGKGTRMFIIFPKSILSPNPSIGRTVVVVAGIKDVLQDMIQISKTKTDKVSGVNKGDQVDFRYKVETSKNNSLVAGAITEALRGSSASGIKIGSFVQDPNPLFGDLENNFAYGASAMLFDAFLTRFNKENNLIVLVGNRSALNTDTRRLVQWVDALHFNTQLFIIAMEKNAQVQNALTTANKLGILKPTVNVVDQYFPQGLLISLDINRAIHASLKGLPPKGFVVTVIGEEPDSSQLVAKVKAFGLKLFVYAKSTSDVAKLNDLGFATLETGGSLEFFKMDQFKLEIANEVTKTMRSFALIVVLDDDMQQGTKILTDIHPHHPQFTPGPKEASLEKKLALVLGMAVVYRLRLTTVRLEVVTRIPAVIVVNDIQIFTDMAYTNVSGNLPRLPADKVKLGKYSYHAADADGINYKVTGDGSKLKGSIVAQIMVNDVVVLNTKWPIETSKWKIAVNAEVRLDIGPFSTNIPRTMTGYESYLGNRIVLIGRKNRVFGRSTIVEGLIGFLFDVFLHVWGYVFTWITLAIHYWAGPRITHILSRAGDILEIVMSAMRLEKFNSMTKDWLRLLEIPILAELAERIVEGDKRFGVIDKSGTPYELIKKTVEPENVPTALSKVESL,17.6058
|
97 |
+
EFRTALGTLAAFVAIFFISVQFLFRFYPETWLPIYHLAFKRLSVPPAAIVAIASVTIFCIGAIFGLFPGPALALRRLTGNVAFLIGIATAIGIGVTFLIKGISNSNNTSSMSIIIRTVAGAIAVVLLTLPALVVRIHGNFGRAAVGGGAAEGANAAIFQSLTGSNNAFRDALFNFGVKLLFGLAIETREIILLEYIYNLLLTVGYDLNFASRGRLQLNAITGLLVVSAAIVSGYRTVAAERKVFDFALLKARKSVYPALRELRLVPLITFIGVLFVTTK,15.2478
|
98 |
+
KGLQFTRKGWNHKGRRHWRDFDTVAGNALLGIEGQTGPRMVETGENVTTEPGNRRTRPTLLATGTEPADAGIEETRIEQDVILPLTTKANGGMIRVHHYDVRKIAGVEIDLESDILEARLTDGEDLHNCKFTTTVKAHIKTEPTPVSAADSEILLKGQYVSSDFEVLDSDLDANVSRDSRMWFEVAYICDILDKQTLLNEGMTFTVTSDGYSSGAADVWVLSTIKTQCRHAQGQQWLYRAGNLKPVVEMEIVYSAARDVTGGSLFGAVNSAAPFTVEMLFFPATIEQLRPGTPRAGKTITNPENATSGGNIEVFEEVKHFSDSQFRNEVRFITDDDSVYTATERRRIPNAPQNGIIRYWMKNGYASWNTEKVYARQPDGDITRQESFENAAQSMSTADNYYNHYYKEALRMHLAGGVEDDLEDDVTQEVRVSKDGEVEIDLDLNYTSKRYREGISWFLGCNAAHGIPINDAGVGFAFAAIPQYA,18.6838
|
99 |
+
FSSVATATTTAIAFAIAAGVGGAIGGAVVGSLVIASLRGTVTAASALKAPLVPLALTVGAASLGATIGLAASWGVNLTL,10.8479
|
100 |
+
SSITAAIQLYKPDSISILDDDSPDDLFETVEFLTEKQKNKQTSDNSYKLFADSFLSIVDSPNWTNMLLIAARVLLVLYTICPCCRADWVGAIGTDDVSYDIVCDLLGININFFKITKVLTAQYLPGRTKVGYMKHPLKTSYFVSIYVEDISDCARHPYGFSYAWQYVKKPYGTVSVDIYNGNPREKLFCLEGLNWATGLGLVVGAGAYKSLGTSVERVNTLVIFLETGELFVWAYAALWFRKRYTEDSEAKVNLYIAGLIVLFAVEKVSYAVPDIVFKEQILKSMVIFAKFSIINLYLDALFDFVFICIIILLLRVLSKDLEAVVGPTLSVFL,17.2645
|
101 |
+
LECYGQQSSLIEMYRDYTIKVRDRYANNERIILDHYLVLNGDFYVRLASNKIVLGPDDANSVVAILQIGDMGLFLANGKNVTEMKRMLEKLEILYFTGSEAAVGSVTGHVCLMITNIWKDNKKLVEMLEFLGTEIIYNSVGLVFMIGKMSDKQGVYAKNKFSDSILEIAVKLQNFTWRNHVLFIGAYLYQWELYAEPEVVINNNISVIRVLWDPDGKSLYIIRPEKPPNIFEYLMHGICTFGGVGAIAGGMGVPASHIGGLIYKADFSISSWCEPGSVNVGALPYGSNCVVVQEGGNVVTFSLPTGSDVPIFALEHFPEPGKWKWEGFYWINPTDYRIMISGLKYTLAANAIAGIGAYLESYNIKISTWQYLVNGNPYDSVGVYNQHEYPLYPSLPMSDFTIFPVLTFAP,18.4071
|
benchmarks/MLM/config.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PATH = "/workspace/sg666/MDpLM"
|
2 |
+
TRAIN_DATA = PATH + "/data/membrane/train.csv"
|
3 |
+
TEST_DATA = PATH + "/data/membrane/test.csv"
|
4 |
+
VAL_DATA = PATH + "/data/membrane/val.csv"
|
5 |
+
|
6 |
+
ESM_MODEL_PATH = "facebook/esm2_t30_150M_UR50D"
|
7 |
+
MLM_MODEL_PATH = PATH + "/benchmarks/MLM"
|
8 |
+
CKPT_DIR = PATH + "/benchmarks/MLM/model_ckpts"
|
9 |
+
|
10 |
+
ESM_LAYERS = 3
|
11 |
+
BATCH_SIZE = 8
|
12 |
+
NUM_EPOCHS = 10
|
13 |
+
LEARNING_RATE = 5e-3
|
14 |
+
MASKING_RATE = 0.40
|
benchmarks/MLM/data_loader.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import config
|
4 |
+
import random
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from torch.nn.utils.rnn import pad_sequence
|
7 |
+
from pretrained_models import load_esm2_model
|
8 |
+
|
9 |
+
class ProteinDataset(Dataset):
|
10 |
+
def __init__(self, csv_file, tokenizer):
|
11 |
+
self.tokenizer = tokenizer
|
12 |
+
self.data = pd.read_csv(csv_file)
|
13 |
+
self.max_len = max([len(seq) for seq in self.data['Sequence'].tolist()])
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.data)
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
sequence = self.data.iloc[idx]['Sequence'].upper()
|
20 |
+
|
21 |
+
# Randomly mask 15% of the sequence
|
22 |
+
num_masks = int(len(sequence) * 0.15)
|
23 |
+
mask_indices = random.sample(range(len(sequence)), num_masks)
|
24 |
+
masked_sequence = ''.join(["<mask>" if i in mask_indices else sequence[i] for i in range(len(sequence))])
|
25 |
+
|
26 |
+
inputs = self.tokenizer(masked_sequence, padding="max_length", truncation=True, max_length=self.max_len, return_tensors='pt')
|
27 |
+
input_ids = inputs['input_ids'].squeeze()
|
28 |
+
attention_mask = inputs['attention_mask'].squeeze()
|
29 |
+
|
30 |
+
labels = self.tokenizer(masked_sequence, return_tensors='pt', padding='max_length', max_length=self.max_len, truncation=True)['input_ids'].squeeze()
|
31 |
+
labels = torch.where(input_ids == self.tokenizer.mask_token_id, labels, -100)
|
32 |
+
|
33 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
def get_dataloaders(config):
|
38 |
+
tokenizer, model = load_esm2_model(config.ESM_MODEL_PATH)
|
39 |
+
|
40 |
+
train_dataset = ProteinDataset(config.TRAIN_DATA, tokenizer)
|
41 |
+
val_dataset = ProteinDataset(config.VAL_DATA, tokenizer)
|
42 |
+
test_dataset = ProteinDataset(config.TEST_DATA, tokenizer)
|
43 |
+
|
44 |
+
train_loader = DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True)
|
45 |
+
val_loader = DataLoader(val_dataset, batch_size=config.BATCH_SIZE, shuffle=False)
|
46 |
+
test_loader = DataLoader(test_dataset, batch_size=config.BATCH_SIZE, shuffle=False)
|
47 |
+
|
48 |
+
return train_loader, val_loader, test_loader
|
benchmarks/MLM/esm_utils.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
3 |
+
|
4 |
+
def load_esm2_model(model_name):
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
+
masked_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
7 |
+
embedding_model = AutoModel.from_pretrained(model_name)
|
8 |
+
return tokenizer, masked_model, embedding_model
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def get_latents(model, tokenizer, sequence):
|
13 |
+
inputs = tokenizer(sequence, return_tensors="pt").to(model.device)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
return outputs.last_hidden_state.squeeze(0)
|
benchmarks/MLM/mlm_generate_utils.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import config
|
4 |
+
import sys
|
5 |
+
import pandas as pd
|
6 |
+
from esm_utils import get_latents
|
7 |
+
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
def mask_for_de_novo(sequence_length):
|
11 |
+
return "<mask>" * sequence_length
|
12 |
+
|
13 |
+
def generate_de_novo(sequence_length, tokenizer, model):
|
14 |
+
masked_sequence = mask_for_de_novo(sequence_length)
|
15 |
+
inputs = tokenizer(masked_sequence, return_tensors='pt').to(model.device)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
logits = model(**inputs).logits
|
19 |
+
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
20 |
+
logits_at_masks = logits[0, mask_token_indices]
|
21 |
+
|
22 |
+
pred_tokens = []
|
23 |
+
for i in mask_token_indices:
|
24 |
+
topk_logits, topk_indices = logits_at_masks[i].topk(k=3, dim=-1)
|
25 |
+
probabilities = torch.nn.functional.softmax(topk_logits, dim=-1)
|
26 |
+
predicted_index = torch.distributions.categorical.Categorical(probabilities).sample()
|
27 |
+
predicted_token_id = topk_indices[predicted_index].item()
|
28 |
+
predicted_token = tokenizer.decode([predicted_token_id], skip_special_tokens=True)
|
29 |
+
pred_tokens.append(predicted_token)
|
30 |
+
|
31 |
+
generated_sequence = ''.join(pred_tokens)
|
32 |
+
perplexity = calculate_perplexity(model, tokenizer, generated_sequence)
|
33 |
+
|
34 |
+
return (generated_sequence, perplexity)
|
35 |
+
|
36 |
+
|
37 |
+
def mask_for_scaffold(sequence, generate_type):
|
38 |
+
if generate_type == "uppercase":
|
39 |
+
sequence = ''.join(["<mask>" if residue.isupper() else residue.upper() for residue in sequence])
|
40 |
+
elif generate_type == "lowercase":
|
41 |
+
sequence = ''.join(["<mask>" if residue.islower() else residue for residue in sequence])
|
42 |
+
return sequence
|
43 |
+
|
44 |
+
|
45 |
+
def generate_scaffold(sequence, generate_type, tokenizer, model):
|
46 |
+
masked_sequence = mask_for_scaffold(sequence, generate_type)
|
47 |
+
inputs = tokenizer(masked_sequence, return_tensors='pt').to(model.device)
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
logits = model(**inputs).logits
|
51 |
+
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
52 |
+
logits_at_masks = logits[0, mask_token_indices]
|
53 |
+
|
54 |
+
pred_tokens = []
|
55 |
+
for i in range(len(mask_token_indices)):
|
56 |
+
topk_logits, topk_indices = logits_at_masks[i].topk(k=3, dim=-1)
|
57 |
+
probabilities = torch.nn.functional.softmax(topk_logits, dim=-1)
|
58 |
+
predicted_index = torch.distributions.categorical.Categorical(probabilities).sample()
|
59 |
+
predicted_token_id = topk_indices[predicted_index].item()
|
60 |
+
predicted_token = tokenizer.decode([predicted_token_id], skip_special_tokens=True)
|
61 |
+
|
62 |
+
pred_tokens.append('G' if predicted_token == '' else predicted_token)
|
63 |
+
|
64 |
+
generated_sequence = masked_sequence
|
65 |
+
for token in pred_tokens:
|
66 |
+
generated_sequence = generated_sequence.replace("<mask>", token, 1)
|
67 |
+
|
68 |
+
return generated_sequence, mask_token_indices
|
69 |
+
|
70 |
+
|
71 |
+
def calculate_perplexity(model, tokenizer, generated_sequence, mask_token_indices):
|
72 |
+
total_loss = 0.0
|
73 |
+
tensor_input = tokenizer.encode(generated_sequence, return_tensors='pt').to(model.device)
|
74 |
+
|
75 |
+
for i in mask_token_indices:
|
76 |
+
masked_input = tensor_input.clone()
|
77 |
+
masked_input[0, i] = tokenizer.mask_token_id
|
78 |
+
|
79 |
+
labels = torch.full(tensor_input.shape, -100).to(model.device)
|
80 |
+
labels[0, i] = tensor_input[0, i]
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = model(masked_input, labels=labels)
|
84 |
+
total_loss += outputs.loss.item()
|
85 |
+
|
86 |
+
num_mask_tokens = len(mask_token_indices)
|
87 |
+
if num_mask_tokens == 0:
|
88 |
+
perplexity = 10000
|
89 |
+
else:
|
90 |
+
avg_loss = total_loss / num_mask_tokens
|
91 |
+
perplexity = math.exp(avg_loss)
|
92 |
+
|
93 |
+
return perplexity
|
94 |
+
|
95 |
+
|
96 |
+
def calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device):
|
97 |
+
og_embeddings = get_latents(esm_model, tokenizer, original_sequence.upper()).to(device)
|
98 |
+
new_embeddings = get_latents(esm_model, tokenizer, generated_sequence).to(device)
|
99 |
+
|
100 |
+
sequence_similarity = torch.nn.functional.cosine_similarity(og_embeddings, new_embeddings, dim=-1)
|
101 |
+
cosine_similarity = torch.mean(sequence_similarity).item()
|
102 |
+
return cosine_similarity
|
103 |
+
|
104 |
+
|
105 |
+
def calculate_hamming_dist(original_sequence, generated_sequence):
|
106 |
+
generated_sequence = generated_sequence.upper()
|
107 |
+
original_sequence = original_sequence.upper()
|
108 |
+
return sum(1 if original_sequence[i] != generated_sequence[i] else 0 for i in range(len(original_sequence)))
|
benchmarks/MLM/mlm_lowercase_results.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/MLM/mlm_motif_benchmarking.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import config
|
3 |
+
import sys
|
4 |
+
import pandas as pd
|
5 |
+
from mlm_generate_utils import generate_scaffold, calculate_perplexity, calculate_cosine_sim, calculate_hamming_dist
|
6 |
+
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
|
7 |
+
|
8 |
+
def motif_benchmarking():
|
9 |
+
path = "/workspace/sg666/MDpLM"
|
10 |
+
|
11 |
+
test_sequences = pd.read_csv(path + "/data/membrane/test.csv")['Sequence'].tolist()
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
|
14 |
+
mlm_model = AutoModelForMaskedLM.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
|
15 |
+
esm_model = AutoModel.from_pretrained("facebook/esm2_t36_3B_UR50D")
|
16 |
+
|
17 |
+
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
18 |
+
mlm_model.to(device)
|
19 |
+
esm_model.to(device)
|
20 |
+
|
21 |
+
for generate_case in ['uppercase', 'lowercase']:
|
22 |
+
case_results = []
|
23 |
+
for original_sequence in test_sequences:
|
24 |
+
generated_sequence, mask_token_idx = generate_scaffold(original_sequence, generate_case, tokenizer, mlm_model)
|
25 |
+
perplexity = calculate_perplexity(mlm_model, tokenizer, generated_sequence, mask_token_idx)
|
26 |
+
cos_sim = calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device)
|
27 |
+
hamming_distance = calculate_hamming_dist(original_sequence, generated_sequence)
|
28 |
+
|
29 |
+
case_results.append([original_sequence, generated_sequence, perplexity, cos_sim, hamming_distance])
|
30 |
+
|
31 |
+
print(case_results)
|
32 |
+
sys.stdout.flush()
|
33 |
+
|
34 |
+
df = pd.DataFrame(case_results, columns=['Original Sequence', 'Generated Sequence', 'Perplexity', 'Cosine Similarity', 'Hamming Distance'])
|
35 |
+
df.to_csv(path + f'/benchmarks/MLM/mlm_{generate_case}_results.csv', index=False)
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
motif_benchmarking()
|
benchmarks/MLM/mlm_uppercase_results.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/MLM/model.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import config
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from pretrained_models import load_esm2_model
|
5 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, AutoModel
|
6 |
+
|
7 |
+
class MembraneTokenizer:
|
8 |
+
def __init__(self, esm_model_path=config.ESM_MODEL_PATH):
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
10 |
+
|
11 |
+
def __getattr__(self, name):
|
12 |
+
return getattr(self.tokenizer, name)
|
13 |
+
|
14 |
+
def __call__(self, *args, **kwargs):
|
15 |
+
return self.tokenizer(*args, **kwargs)
|
16 |
+
|
17 |
+
def save_tokenizer(self, save_dir):
|
18 |
+
self.tokenizer.save_pretrained(save_dir)
|
19 |
+
|
20 |
+
def load_tokenizer(self, load_dir):
|
21 |
+
self.tokenizer.save_pretrained(load_dir)
|
22 |
+
|
23 |
+
class MembraneMLM:
|
24 |
+
def __init__(self, esm_model_path=config.ESM_MODEL_PATH):
|
25 |
+
self.model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
|
26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
27 |
+
|
28 |
+
def __getattr__(self, name):
|
29 |
+
return getattr(self.model, name)
|
30 |
+
|
31 |
+
def __call__(self, *args, **kwargs):
|
32 |
+
return self.model(*args, **kwargs)
|
33 |
+
|
34 |
+
def freeze_model(self):
|
35 |
+
# Disable parameter updates for all layers
|
36 |
+
for param in self.model.parameters():
|
37 |
+
param.requires_grad = False
|
38 |
+
|
39 |
+
def unfreeze_n_layers(self):
|
40 |
+
# Count number of encoder layers
|
41 |
+
model_layers = len(self.model.esm.encoder.layer)
|
42 |
+
|
43 |
+
# Enable parameter updates for the last 3 encoder layers
|
44 |
+
for i, layer in enumerate(self.model.esm.encoder.layer):
|
45 |
+
if i >= model_layers-config.ESM_LAYERS:
|
46 |
+
for module in layer.attention.self.key.modules():
|
47 |
+
for param in module.parameters():
|
48 |
+
param.requires_grad = True
|
49 |
+
for module in layer.attention.self.query.modules():
|
50 |
+
for param in module.parameters():
|
51 |
+
param.requires_grad = True
|
52 |
+
for module in layer.attention.self.value.modules():
|
53 |
+
for param in module.parameters():
|
54 |
+
param.requires_grad = True
|
55 |
+
|
56 |
+
def forward(self, **inputs):
|
57 |
+
return self.model(**inputs)
|
58 |
+
|
59 |
+
def save_model(self, save_dir):
|
60 |
+
self.model.save_pretrained(save_dir)
|
61 |
+
self.tokenizer.save_pretrained(save_dir)
|
62 |
+
|
63 |
+
def load_model(self, load_dir):
|
64 |
+
self.model = AutoModel.from_pretrained(load_dir)
|
65 |
+
self.tokenizer = AutoTokenizer.from_pretrained(load_dir)
|
benchmarks/MLM/pretrained_models.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModel, EsmForMaskedLM, AutoModelForMaskedLM
|
3 |
+
|
4 |
+
def load_esm2_model(esm_model_path):
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
6 |
+
model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
|
7 |
+
return tokenizer, model
|
8 |
+
|
9 |
+
def load_mlm_model(esm_model_path, ckpt_path):
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
11 |
+
model = AutoModelForMaskedLM.from_pretrained(ckpt_path)
|
12 |
+
return tokenizer, model
|
benchmarks/MLM/screen_mlm_cosine_hamming.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
path = "/home/sg666/MDpLM/benchmarks/MLM"
|
4 |
+
|
5 |
+
df = pd.read_csv(path + "/mlm_uppercase_results.csv")
|
6 |
+
|
7 |
+
all_sequences = df['Original Sequence'].tolist()
|
8 |
+
seq_len_sum = sum(len(seq) for seq in all_sequences)
|
9 |
+
ppls = [ppl for ppl in df['Perplexity'].tolist() if ppl != 10000]
|
10 |
+
|
11 |
+
ppl_mean = sum(ppls) / len(ppls)
|
12 |
+
cos_mean = df.loc[:, 'Cosine Similarity'].mean()
|
13 |
+
hamming_mean = sum(dist for dist in df['Hamming Distance'].tolist()) / seq_len_sum
|
14 |
+
|
15 |
+
print(ppl_mean)
|
16 |
+
print(cos_mean)
|
17 |
+
print(hamming_mean)
|
benchmarks/MLM/train_and_test.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import config
|
3 |
+
import math
|
4 |
+
import sys
|
5 |
+
import os
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.optim import Adam
|
8 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
9 |
+
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer, AutoConfig
|
10 |
+
from pretrained_models import load_esm2_model
|
11 |
+
from model import MembraneMLM, MembraneTokenizer
|
12 |
+
from data_loader import get_dataloaders
|
13 |
+
|
14 |
+
def save_hyperparams(ckpt_dir):
|
15 |
+
hyperparms_txt_file = os.path.join(ckpt_dir, "hyperparameters.txt")
|
16 |
+
with open(hyperparms_txt_file, 'w') as f:
|
17 |
+
for k, v in vars(config).items():
|
18 |
+
if k.isupper():
|
19 |
+
f.write(f"{k}: {v}\n")
|
20 |
+
|
21 |
+
def train_and_validate(model, optimizer, device, train_loader, val_loader, num_epochs, ckpt_dir):
|
22 |
+
best_val_loss = float('inf')
|
23 |
+
|
24 |
+
for epoch in range(num_epochs):
|
25 |
+
print(f"EPOCH {epoch+1}/{num_epochs}")
|
26 |
+
sys.stderr.flush()
|
27 |
+
total_train_loss = 0.0
|
28 |
+
weighted_total_train_loss = 0.0
|
29 |
+
total_masked_train_tokens = 0
|
30 |
+
|
31 |
+
model.train()
|
32 |
+
train_update_interval = len(train_loader) // 4
|
33 |
+
|
34 |
+
with tqdm(enumerate(train_loader), desc="Training batch", total=len(train_loader), leave=True, position=0, ncols=100) as trainbar:
|
35 |
+
for step, inputs in trainbar:
|
36 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
37 |
+
optimizer.zero_grad()
|
38 |
+
outputs = model(**inputs)
|
39 |
+
train_loss = outputs.loss
|
40 |
+
train_loss.backward()
|
41 |
+
optimizer.step()
|
42 |
+
|
43 |
+
num_mask_tokens = (inputs["input_ids"] == tokenizer.mask_token_id).sum().item()
|
44 |
+
total_masked_train_tokens += num_mask_tokens
|
45 |
+
|
46 |
+
total_train_loss += train_loss.item()
|
47 |
+
weighted_total_train_loss += train_loss.item() * num_mask_tokens
|
48 |
+
|
49 |
+
if (step+1) % train_update_interval == 0:
|
50 |
+
trainbar.update(train_update_interval)
|
51 |
+
|
52 |
+
avg_train_loss = total_train_loss / len(train_loader)
|
53 |
+
avg_train_neg_log_likelihood = weighted_total_train_loss / total_masked_train_tokens
|
54 |
+
train_perplexity = math.exp(avg_train_neg_log_likelihood)
|
55 |
+
|
56 |
+
# Save model every epoch
|
57 |
+
train_ckpt_path = os.path.join(config.CKPT_DIR, f'epoch{epoch+1}')
|
58 |
+
model.save_model(train_ckpt_path)
|
59 |
+
save_hyperparams(train_ckpt_path)
|
60 |
+
|
61 |
+
# Validate model
|
62 |
+
if val_loader:
|
63 |
+
model.eval()
|
64 |
+
total_val_loss = 0.0
|
65 |
+
weighted_total_val_loss = 0.0
|
66 |
+
total_masked_val_tokens = 0.0
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
val_update_interval = len(val_loader) // 4
|
70 |
+
|
71 |
+
with tqdm(enumerate(val_loader), desc='Validiation batch', total=len(val_loader), leave=True, position=0) as valbar:
|
72 |
+
for step, inputs in valbar:
|
73 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
74 |
+
val_loss = model(**inputs).loss.item()
|
75 |
+
|
76 |
+
num_mask_tokens = (inputs['input_ids'] == tokenizer.mask_token_id).sum().item()
|
77 |
+
total_masked_val_tokens += num_mask_tokens
|
78 |
+
|
79 |
+
total_val_loss += val_loss
|
80 |
+
weighted_total_val_loss += val_loss * num_mask_tokens
|
81 |
+
|
82 |
+
if (step+1) % val_update_interval == 0:
|
83 |
+
valbar.update(val_update_interval)
|
84 |
+
|
85 |
+
avg_val_loss = total_val_loss / len(val_loader)
|
86 |
+
avg_val_neg_log_likelihood = weighted_total_val_loss / total_masked_val_tokens
|
87 |
+
val_perplexity = math.exp(avg_val_neg_log_likelihood)
|
88 |
+
|
89 |
+
# Save the best model based on validation loss
|
90 |
+
if avg_val_loss < best_val_loss:
|
91 |
+
best_val_loss = avg_val_loss
|
92 |
+
val_ckpt_path = os.path.join(config.CKPT_DIR, "best_model_epoch")
|
93 |
+
model.save_model(val_ckpt_path)
|
94 |
+
save_hyperparams(val_ckpt_path)
|
95 |
+
|
96 |
+
|
97 |
+
print(f"Average train loss: {avg_train_loss}")
|
98 |
+
print(f"Average train perplexity: {train_perplexity}\n")
|
99 |
+
sys.stdout.flush()
|
100 |
+
|
101 |
+
print(f"Average validation loss: {avg_val_loss}")
|
102 |
+
print(f"Average validation perplexity: {val_perplexity}\n")
|
103 |
+
sys.stdout.flush()
|
104 |
+
|
105 |
+
|
106 |
+
return avg_train_loss, train_perplexity, avg_val_loss, val_perplexity
|
107 |
+
|
108 |
+
|
109 |
+
def test(model, test_loader, device):
|
110 |
+
model.to(device).eval()
|
111 |
+
total_test_loss = 0.0
|
112 |
+
weighted_total_test_loss = 0.0
|
113 |
+
total_masked_test_tokens = 0.0
|
114 |
+
|
115 |
+
with torch.no_grad():
|
116 |
+
for step, inputs in enumerate(test_loader):
|
117 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
118 |
+
outputs = model(**inputs)
|
119 |
+
test_loss = outputs.loss.item()
|
120 |
+
|
121 |
+
num_mask_tokens = (inputs["input_ids"] == tokenizer.mask_token_id).sum().item()
|
122 |
+
total_masked_test_tokens += num_mask_tokens
|
123 |
+
|
124 |
+
total_test_loss += test_loss
|
125 |
+
weighted_total_test_loss += test_loss * num_mask_tokens
|
126 |
+
|
127 |
+
avg_test_loss = total_test_loss / len(test_loader)
|
128 |
+
avg_test_neg_log_likilehood = weighted_total_test_loss / total_masked_test_tokens
|
129 |
+
test_perplexity = math.exp(avg_test_neg_log_likilehood)
|
130 |
+
|
131 |
+
return avg_test_loss, test_perplexity
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
136 |
+
print(device)
|
137 |
+
|
138 |
+
model = MembraneMLM()
|
139 |
+
model.to(device)
|
140 |
+
model.freeze_model()
|
141 |
+
model.unfreeze_n_layers()
|
142 |
+
tokenizer = model.tokenizer
|
143 |
+
|
144 |
+
train_loader, val_loader, test_loader = get_dataloaders(config)
|
145 |
+
optimizer = Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config.LEARNING_RATE)
|
146 |
+
|
147 |
+
# Train and test the model
|
148 |
+
avg_train_loss, train_ppl, avg_val_loss, val_ppl = train_and_validate(model, optimizer, device, train_loader, val_loader, config.NUM_EPOCHS, config.CKPT_DIR)
|
149 |
+
avg_test_loss, test_ppl = test(model, test_loader, device)
|
150 |
+
|
151 |
+
results_dict = {"Average train loss": avg_train_loss,
|
152 |
+
"Average train perplexity": train_ppl,
|
153 |
+
"Average val loss": avg_val_loss,
|
154 |
+
"Average val perplexity": val_ppl,
|
155 |
+
"Average test loss": avg_test_loss,
|
156 |
+
"Average test perplexity": test_ppl,
|
157 |
+
}
|
158 |
+
|
159 |
+
print("TRAIN AND TEST RESULTS")
|
160 |
+
for k, v in results_dict.items():
|
161 |
+
print(f"{k}: {v}\n")
|
162 |
+
|
163 |
+
# Save training and test performance
|
164 |
+
with open(config.CKPT_DIR + "/train_test_results.txt", 'w') as f:
|
165 |
+
for k, v in results_dict.items():
|
166 |
+
f.write(f'{k}: {v}\n')
|
167 |
+
|
168 |
+
|
169 |
+
### Get embeddings from model
|
170 |
+
# best_model_pth = config.MLM_MODEL_PATH + "/best_model"
|
171 |
+
|
172 |
+
# model = AutoModel.from_pretrained(best_model_pth)
|
173 |
+
# tokenizer = AutoTokenizer.from_pretrained(best_model_pth)
|
174 |
+
# model.eval().to(device)
|
175 |
+
|
176 |
+
# random_seq = "WPIQMVYSLGQHADYMQWFTIMPPPIEMIFVWHNCTQHDYSFRERAGEVDQARMKTEMAR"
|
177 |
+
# inputs = tokenizer(random_seq, return_tensors='pt')
|
178 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
179 |
+
# inputs = inputs['input_ids']
|
180 |
+
# print(inputs)
|
181 |
+
# with torch.no_grad():
|
182 |
+
# outputs = model(inputs).last_hidden_state
|
183 |
+
# print(outputs)
|
184 |
+
# print(outputs.size())
|
benchmarks/Supervised/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
benchmarks/Supervised/Localization/cell_localization_predictor.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
from datetime import datetime
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import pickle
|
13 |
+
import os
|
14 |
+
|
15 |
+
# Hyperparameters dictionary
|
16 |
+
path = "/workspace/sg666/MDpLM"
|
17 |
+
|
18 |
+
hyperparams = {
|
19 |
+
"batch_size": 1,
|
20 |
+
"learning_rate": 5e-4,
|
21 |
+
"num_epochs": 5,
|
22 |
+
"esm_model_path": "facebook/esm2_t33_650M_UR50D",
|
23 |
+
'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
|
24 |
+
"mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
|
25 |
+
"train_data": path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv",
|
26 |
+
"test_data" : path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv",
|
27 |
+
}
|
28 |
+
|
29 |
+
# Helper functions to obtain all embeddings for a sequence
|
30 |
+
def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
|
31 |
+
esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
32 |
+
esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
|
33 |
+
mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
|
34 |
+
mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
|
35 |
+
|
36 |
+
return esm_tokenizer, esm_model, mlm_model, mdlm_model
|
37 |
+
|
38 |
+
def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device):
|
39 |
+
if embedding_type == "esm":
|
40 |
+
inputs = tokenizer(sequence, return_tensors='pt').to(device)
|
41 |
+
with torch.no_grad():
|
42 |
+
embeddings = esm_model(**inputs).last_hidden_state.squeeze(0)
|
43 |
+
|
44 |
+
elif embedding_type == "mlm":
|
45 |
+
inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
|
46 |
+
with torch.no_grad():
|
47 |
+
embeddings = mlm_model(inputs).last_hidden_state.squeeze(0)
|
48 |
+
|
49 |
+
elif embedding_type == "mdlm":
|
50 |
+
inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
|
51 |
+
with torch.no_grad():
|
52 |
+
embeddings = mdlm_model(inputs).last_hidden_state.squeeze(0)
|
53 |
+
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
|
57 |
+
# Dataset class can load pickle file
|
58 |
+
class LocalizationDataset(Dataset):
|
59 |
+
def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
|
60 |
+
self.data = pd.read_csv(csv_file)
|
61 |
+
self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
|
62 |
+
self.embedding_type = embedding_type
|
63 |
+
self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
|
64 |
+
self.device = device
|
65 |
+
|
66 |
+
def __len__(self):
|
67 |
+
return len(self.data)
|
68 |
+
|
69 |
+
def __getitem__(self, idx):
|
70 |
+
sequence = self.data.iloc[idx]['Sequence']
|
71 |
+
embeddings = get_latents(self.embedding_type, self.tokenizer, self.mlm_model, self.esm_model, self.mdlm_model,
|
72 |
+
sequence, self.device)
|
73 |
+
|
74 |
+
label = 0 if self.data.iloc[idx]['Cell membrane'] == 0 else 1
|
75 |
+
labels = torch.tensor(label, dtype=torch.float32).view(1,1).squeeze(-1)
|
76 |
+
|
77 |
+
return embeddings, labels
|
78 |
+
|
79 |
+
# Predict localization with MLP head using pooled embeddings
|
80 |
+
class LocalizationPredictor(nn.Module):
|
81 |
+
def __init__(self, input_dim):
|
82 |
+
super(LocalizationPredictor, self).__init__()
|
83 |
+
self.classifier = nn.Sequential(
|
84 |
+
nn.Linear(input_dim, 640),
|
85 |
+
nn.ReLU(),
|
86 |
+
nn.Linear(640, 1)
|
87 |
+
)
|
88 |
+
|
89 |
+
def forward(self, embeddings):
|
90 |
+
logits = self.classifier(embeddings)
|
91 |
+
logits = torch.mean(logits, dim=1)
|
92 |
+
probs = torch.nn.functional.softmax(logits)
|
93 |
+
return probs
|
94 |
+
|
95 |
+
# Training function
|
96 |
+
def train(model, dataloader, optimizer, criterion, device):
|
97 |
+
model.train()
|
98 |
+
total_loss = 0
|
99 |
+
for embeddings, labels in tqdm(dataloader):
|
100 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
101 |
+
optimizer.zero_grad()
|
102 |
+
outputs = model(embeddings)
|
103 |
+
loss = criterion(outputs, labels)
|
104 |
+
loss.backward()
|
105 |
+
optimizer.step()
|
106 |
+
total_loss += loss.item()
|
107 |
+
return total_loss / len(dataloader)
|
108 |
+
|
109 |
+
# Evaluation function
|
110 |
+
def evaluate(model, dataloader, device):
|
111 |
+
model.eval()
|
112 |
+
preds, true_labels = [], []
|
113 |
+
with torch.no_grad():
|
114 |
+
for embeddings, labels in tqdm(dataloader):
|
115 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
116 |
+
outputs = model(embeddings)
|
117 |
+
preds.append(outputs.cpu().numpy())
|
118 |
+
true_labels.append(labels.cpu().numpy())
|
119 |
+
return preds, true_labels
|
120 |
+
|
121 |
+
# Metrics calculation
|
122 |
+
def calculate_metrics(preds, labels, threshold=0.5):
|
123 |
+
all_metrics = []
|
124 |
+
for pred, label in zip(preds, labels):
|
125 |
+
pred = (pred > threshold).astype(int)
|
126 |
+
|
127 |
+
accuracy = accuracy_score(label, pred)
|
128 |
+
precision = precision_score(label, pred, average='macro')
|
129 |
+
recall = recall_score(label, pred, average='macro')
|
130 |
+
f1_macro = f1_score(label, pred, average='macro')
|
131 |
+
f1_micro = f1_score(label, pred, average='micro')
|
132 |
+
|
133 |
+
all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro])
|
134 |
+
|
135 |
+
avg_metrics = np.mean(all_metrics, axis=0)
|
136 |
+
print(avg_metrics)
|
137 |
+
return avg_metrics
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
143 |
+
|
144 |
+
for embedding_type in ['mdlm', 'esm', 'mlm']:
|
145 |
+
# Initialize datasets
|
146 |
+
train_dataset = LocalizationDataset(embedding_type,
|
147 |
+
hyperparams['train_data'],
|
148 |
+
hyperparams['esm_model_path'],
|
149 |
+
hyperparams['mlm_model_path'],
|
150 |
+
hyperparams['mdlm_model_path'],
|
151 |
+
device)
|
152 |
+
test_dataset = LocalizationDataset(embedding_type,
|
153 |
+
hyperparams['test_data'],
|
154 |
+
hyperparams['esm_model_path'],
|
155 |
+
hyperparams['mlm_model_path'],
|
156 |
+
hyperparams['mdlm_model_path'],
|
157 |
+
device)
|
158 |
+
|
159 |
+
# Prepare dataloaders
|
160 |
+
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
161 |
+
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
162 |
+
|
163 |
+
# Initialize model, optimizer, and loss function
|
164 |
+
input_dim=640 if embedding_type=="mdlm" else 1280
|
165 |
+
model = LocalizationPredictor(input_dim=input_dim).to(device)
|
166 |
+
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
167 |
+
criterion = nn.BCELoss()
|
168 |
+
|
169 |
+
# Initialize main directory model checkpoints
|
170 |
+
base_checkpoint_dir = f"{path}/benchmarks/Supervised/Localization/model_checkpoints/{embedding_type}"
|
171 |
+
# Initialize subdirectory and name it based on hyperparameters
|
172 |
+
hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}"
|
173 |
+
model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str)
|
174 |
+
os.makedirs(model_checkpoint_dir, exist_ok=True)
|
175 |
+
|
176 |
+
|
177 |
+
# Training loop
|
178 |
+
for epoch in range(hyperparams["num_epochs"]):
|
179 |
+
# Train the model
|
180 |
+
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
181 |
+
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
182 |
+
print(f"TRAIN LOSS: {train_loss:.4f}")
|
183 |
+
print("\n")
|
184 |
+
|
185 |
+
# Save the model checkpoint for the current epoch
|
186 |
+
checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth")
|
187 |
+
torch.save({
|
188 |
+
'epoch': epoch + 1,
|
189 |
+
'model_state_dict': model.state_dict(),
|
190 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
191 |
+
'loss': train_loss,
|
192 |
+
}, checkpoint_path)
|
193 |
+
print(f"Checkpoint saved at {checkpoint_path}\n")
|
194 |
+
|
195 |
+
# Save hyperparameters only once
|
196 |
+
if epoch == 0: # Hyperparameters don't change midway through training
|
197 |
+
hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt")
|
198 |
+
with open(hyperparams_file, 'w') as f:
|
199 |
+
for key, value in hyperparams.items():
|
200 |
+
f.write(f"{key}: {value}\n")
|
201 |
+
print(f"Hyperparameters saved at {hyperparams_file}\n")
|
202 |
+
|
203 |
+
# Evaluate model on test dataset
|
204 |
+
print("Test set")
|
205 |
+
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
206 |
+
test_metrics = calculate_metrics(test_preds, test_labels)
|
207 |
+
print(test_metrics)
|
208 |
+
print("TEST METRICS:")
|
209 |
+
print(f"Accuracy: {test_metrics[0]:.4f}")
|
210 |
+
print(f"Precision: {test_metrics[1]:.4f}")
|
211 |
+
print(f"Recall: {test_metrics[2]:.4f}")
|
212 |
+
print(f"F1 Macro Score: {test_metrics[3]:.4f}")
|
213 |
+
print(f"F1 Micro Score: {test_metrics[4]:.4f}")
|
214 |
+
|
215 |
+
#Save test results
|
216 |
+
test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt")
|
217 |
+
with open(test_results_file, 'w') as f:
|
218 |
+
f.write("TEST METRICS:\n")
|
219 |
+
f.write(f"Accuracy: {test_metrics[0]:.4f}\n")
|
220 |
+
f.write(f"Precision: {test_metrics[1]:.4f}\n")
|
221 |
+
f.write(f"Recall: {test_metrics[2]:.4f}\n")
|
222 |
+
f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n")
|
223 |
+
f.write(f"F1 Micro: {test_metrics[4]:.4f}\n")
|
224 |
+
print(f"Test results saved at {test_results_file}\n")
|
benchmarks/Supervised/Localization/process_cell_local_data.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
path = "/home/sg666/MDpLM/benchmarks/Supervised/Localization"
|
4 |
+
|
5 |
+
train_val = pd.read_csv(path + "/deeploc2.0_train_val.csv")
|
6 |
+
test = pd.read_csv(path + "/deeploc2.0_test.csv")
|
7 |
+
|
8 |
+
train_val = train_val[train_val['Sequence'].apply(len) < 1024].reset_index(drop=True)
|
9 |
+
test = test[test['Sequence'].apply(len) < 1024].reset_index(drop=True)
|
10 |
+
|
11 |
+
train_val.to_csv(path + "/true_deeploc2.0_cell-local_train-val.csv", index=False)
|
12 |
+
test.to_csv(path + "/true_deeploc2.0_cell-local_test.csv", index=False)
|
benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ca38d78cc8fbc8777a23f456477901f5af4bbfda7a0908081effd09adbe7e94
|
3 |
+
size 12568908
|
benchmarks/Supervised/Membrane Type/membrane_type_predictor.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
from datetime import datetime
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import pickle
|
13 |
+
import os
|
14 |
+
|
15 |
+
# Hyperparameters dictionary
|
16 |
+
path = "/workspace/sg666/MDpLM"
|
17 |
+
|
18 |
+
hyperparams = {
|
19 |
+
"batch_size": 1,
|
20 |
+
"learning_rate": 5e-4,
|
21 |
+
"num_epochs": 5,
|
22 |
+
"esm_model_path": "facebook/esm2_t33_650M_UR50D",
|
23 |
+
'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
|
24 |
+
"mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
|
25 |
+
"train_data": path + "/benchmarks/Supervised/Membrane Type/membrane_type_train.csv",
|
26 |
+
"test_data" : path + "/benchmarks/Supervised/Membrane Type/membrane_type_test.csv",
|
27 |
+
}
|
28 |
+
|
29 |
+
# Helper functions to obtain all embeddings for a sequence
|
30 |
+
def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
|
31 |
+
esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
32 |
+
esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
|
33 |
+
mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
|
34 |
+
mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
|
35 |
+
return esm_tokenizer, esm_model, mlm_model, mdlm_model
|
36 |
+
|
37 |
+
def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device):
|
38 |
+
if embedding_type == "esm":
|
39 |
+
inputs = tokenizer(sequence, return_tensors='pt').to(device)
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = esm_model(**inputs)
|
42 |
+
embeddings = outputs.last_hidden_state.squeeze(0)
|
43 |
+
|
44 |
+
elif embedding_type == "mlm":
|
45 |
+
inputs = tokenizer(sequence, return_tensors='pt').to(device)
|
46 |
+
with torch.no_grad():
|
47 |
+
embeddings = mlm_model(**inputs).last_hidden_state.squeeze(0)
|
48 |
+
|
49 |
+
elif embedding_type == "mdlm":
|
50 |
+
inputs = tokenizer(sequence, return_tensors="pt").to(device)
|
51 |
+
with torch.no_grad():
|
52 |
+
embeddings = mdlm_model(**inputs).last_hidden_state.squeeze(0)
|
53 |
+
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
|
57 |
+
# Dataset class can load pickle file
|
58 |
+
class MembraneDataset(Dataset):
|
59 |
+
def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
|
60 |
+
self.data = pd.read_csv(csv_file)
|
61 |
+
self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
|
62 |
+
|
63 |
+
self.embedding_type = embedding_type
|
64 |
+
self.device = device
|
65 |
+
|
66 |
+
self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
|
67 |
+
|
68 |
+
# Create multi-class label list
|
69 |
+
self.data['label'] = self.data.iloc[:, 3:7].values.tolist()
|
70 |
+
self.data['label'] = self.data['label']
|
71 |
+
|
72 |
+
def __len__(self):
|
73 |
+
return len(self.data)
|
74 |
+
|
75 |
+
def __getitem__(self, idx):
|
76 |
+
sequence = self.data.iloc[idx]['Sequence']
|
77 |
+
embeddings = get_latents(self.embedding_type, self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model,
|
78 |
+
sequence, self.device)
|
79 |
+
labels = torch.tensor(self.data.iloc[idx]['label'], dtype=torch.float32)
|
80 |
+
|
81 |
+
return embeddings, labels
|
82 |
+
|
83 |
+
|
84 |
+
# Predict localization with MLP head using pooled embeddings
|
85 |
+
class MembranePredictor(nn.Module):
|
86 |
+
def __init__(self, input_dim, num_classes):
|
87 |
+
super(MembranePredictor, self).__init__()
|
88 |
+
self.classifier = nn.Sequential(
|
89 |
+
nn.Linear(input_dim, 640),
|
90 |
+
nn.ReLU(),
|
91 |
+
nn.Linear(640, num_classes)
|
92 |
+
)
|
93 |
+
|
94 |
+
def forward(self, embeddings):
|
95 |
+
logits = self.classifier(embeddings)
|
96 |
+
logits = torch.mean(logits, dim=1)
|
97 |
+
probs = torch.sigmoid(logits)
|
98 |
+
return probs # pass logits of dimension 1x8 (8-class distribution) to CE loss
|
99 |
+
|
100 |
+
# Training function
|
101 |
+
def train(model, dataloader, optimizer, criterion, device):
|
102 |
+
model.train()
|
103 |
+
total_loss = 0
|
104 |
+
for embeddings, labels in tqdm(dataloader):
|
105 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
106 |
+
optimizer.zero_grad()
|
107 |
+
outputs = model(embeddings)
|
108 |
+
loss = criterion(outputs, labels)
|
109 |
+
loss.backward()
|
110 |
+
optimizer.step()
|
111 |
+
total_loss += loss.item()
|
112 |
+
return total_loss / len(dataloader)
|
113 |
+
|
114 |
+
# Evaluation function
|
115 |
+
def evaluate(model, dataloader, device):
|
116 |
+
model.eval()
|
117 |
+
preds, true_labels = [], []
|
118 |
+
with torch.no_grad():
|
119 |
+
for embeddings, labels in tqdm(dataloader):
|
120 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
121 |
+
outputs = model(embeddings)
|
122 |
+
preds.append(outputs.cpu().numpy())
|
123 |
+
true_labels.append(labels.cpu().numpy())
|
124 |
+
return preds, true_labels
|
125 |
+
|
126 |
+
# Metrics calculation
|
127 |
+
def calculate_metrics(preds, labels, threshold=0.5):
|
128 |
+
all_metrics = []
|
129 |
+
for pred, label in zip(preds, labels):
|
130 |
+
pred = (pred > threshold).astype(int)
|
131 |
+
|
132 |
+
accuracy = accuracy_score(label, pred)
|
133 |
+
precision = precision_score(label, pred, average='macro')
|
134 |
+
recall = recall_score(label, pred, average='macro')
|
135 |
+
f1_macro = f1_score(label, pred, average='macro')
|
136 |
+
f1_micro = f1_score(label, pred, average='micro')
|
137 |
+
|
138 |
+
all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro])
|
139 |
+
|
140 |
+
avg_metrics = np.mean(all_metrics, axis=0)
|
141 |
+
return avg_metrics
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
|
147 |
+
for embedding_type in ['mdlm', 'mlm', 'esm']:
|
148 |
+
# Initialize datasets
|
149 |
+
train_dataset = MembraneDataset(embedding_type,
|
150 |
+
hyperparams['train_data'],
|
151 |
+
hyperparams['esm_model_path'],
|
152 |
+
hyperparams['mlm_model_path'],
|
153 |
+
hyperparams['mdlm_model_path'],
|
154 |
+
device)
|
155 |
+
test_dataset = MembraneDataset(embedding_type,
|
156 |
+
hyperparams['test_data'],
|
157 |
+
hyperparams['esm_model_path'],
|
158 |
+
hyperparams['mlm_model_path'],
|
159 |
+
hyperparams['mdlm_model_path'],
|
160 |
+
device)
|
161 |
+
|
162 |
+
# Prepare dataloaders
|
163 |
+
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
164 |
+
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
165 |
+
|
166 |
+
# Initialize model, optimizer, and loss function
|
167 |
+
input_dim=640 if embedding_type=="mdlm" else 1280
|
168 |
+
model = MembranePredictor(input_dim=input_dim, num_classes=4).to(device)
|
169 |
+
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
170 |
+
criterion = nn.CrossEntropyLoss()
|
171 |
+
|
172 |
+
# Initialize main directory model checkpoints
|
173 |
+
base_checkpoint_dir = f"{path}/benchmarks/Supervised/Membrane Type/model_checkpoints/{embedding_type}"
|
174 |
+
# Initialize subdirectory and name it based on hyperparameters
|
175 |
+
hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}"
|
176 |
+
model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str)
|
177 |
+
os.makedirs(model_checkpoint_dir, exist_ok=True)
|
178 |
+
|
179 |
+
# Training loop
|
180 |
+
for epoch in range(hyperparams["num_epochs"]):
|
181 |
+
# Train the model
|
182 |
+
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
183 |
+
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
184 |
+
print(f"TRAIN LOSS: {train_loss:.4f}")
|
185 |
+
print("\n")
|
186 |
+
|
187 |
+
# Save the model checkpoint for the current epoch
|
188 |
+
checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth")
|
189 |
+
torch.save({
|
190 |
+
'epoch': epoch + 1,
|
191 |
+
'model_state_dict': model.state_dict(),
|
192 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
193 |
+
'loss': train_loss,
|
194 |
+
}, checkpoint_path)
|
195 |
+
print(f"Checkpoint saved at {checkpoint_path}\n")
|
196 |
+
|
197 |
+
# Save hyperparameters only once
|
198 |
+
if epoch == 0: # Hyperparameters don't change midway through training
|
199 |
+
hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt")
|
200 |
+
with open(hyperparams_file, 'w') as f:
|
201 |
+
for key, value in hyperparams.items():
|
202 |
+
f.write(f"{key}: {value}\n")
|
203 |
+
print(f"Hyperparameters saved at {hyperparams_file}\n")
|
204 |
+
|
205 |
+
|
206 |
+
# Evaluate model on test dataset
|
207 |
+
print("Test set")
|
208 |
+
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
209 |
+
test_metrics = calculate_metrics(test_preds, test_labels)
|
210 |
+
print("TEST METRICS:")
|
211 |
+
print(f"Accuracy: {test_metrics[0]:.4f}")
|
212 |
+
print(f"Precision: {test_metrics[1]:.4f}")
|
213 |
+
print(f"Recall: {test_metrics[2]:.4f}")
|
214 |
+
print(f"F1 Macro Score: {test_metrics[3]:.4f}")
|
215 |
+
print(f"F1 Micro Score: {test_metrics[4]:.4f}")
|
216 |
+
|
217 |
+
# Save test results
|
218 |
+
test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt")
|
219 |
+
with open(test_results_file, 'w') as f:
|
220 |
+
f.write("TEST METRICS:\n")
|
221 |
+
f.write(f"Accuracy: {test_metrics[0]:.4f}\n")
|
222 |
+
f.write(f"Precision: {test_metrics[1]:.4f}\n")
|
223 |
+
f.write(f"Recall: {test_metrics[2]:.4f}\n")
|
224 |
+
f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n")
|
225 |
+
f.write(f"F1 Micro: {test_metrics[4]:.4f}\n")
|
226 |
+
print(f"Test results saved at {test_results_file}\n")
|
benchmarks/Supervised/Membrane Type/membrane_type_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/Supervised/Membrane Type/membrane_type_train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16b8eec677afa2de578d04ee1a0fc9582b2f8cfc47622cbd6374309cd6ab96f3
|
3 |
+
size 12335695
|
benchmarks/Supervised/Membrane Type/split_membrane_type_data.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Splits the DeepLoc 2.1 membrane type data into train/val and testing splits
|
2 |
+
# Partition value of "4" indicates testing data
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
path = "/workspace/a03-sgoel/MDpLM/benchmarks/DeepLoc/Membrane Type"
|
7 |
+
|
8 |
+
df = pd.read_csv(path + "/unsplit_membrane_type_all.csv")
|
9 |
+
df = df.drop(columns=['Unnamed: 0'])
|
10 |
+
|
11 |
+
train = df[df['Partition'] != 4]
|
12 |
+
test = df[df['Partition'] == 4]
|
13 |
+
|
14 |
+
train.to_csv(path + "/membrane_type_train.csv", index=False)
|
15 |
+
test.to_csv(path + "/membrane_type_test.csv", index=False)
|
benchmarks/Supervised/Membrane Type/unsplit_membrane_type_all.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d878da32a06092f880262048e3c1eb692721c274b0a458fcc712a0dcbd80c71
|
3 |
+
size 15683507
|
benchmarks/Supervised/Solubility/solubility_transformer.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
7 |
+
from sklearn.model_selection import ParameterGrid
|
8 |
+
from tqdm import tqdm
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
import sys
|
12 |
+
import os
|
13 |
+
from datetime import datetime
|
14 |
+
import logging
|
15 |
+
|
16 |
+
logging.getLogger("transformers").setLevel(logging.ERROR)
|
17 |
+
|
18 |
+
# Hyperparameters dictionary
|
19 |
+
path = "/workspace/sg666/MDpLM"
|
20 |
+
hyperparams = {
|
21 |
+
"train_data": path + "/data/membrane/train.csv",
|
22 |
+
"val_data": path + "/data/membrane/val.csv",
|
23 |
+
"test_data": path + "/data/membrane/test.csv",
|
24 |
+
'esm_model_path': "facebook/esm2_t33_650M_UR50D",
|
25 |
+
'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
|
26 |
+
"mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
|
27 |
+
"batch_size": 1,
|
28 |
+
"learning_rate": 5e-5,
|
29 |
+
"num_epochs": 2,
|
30 |
+
"num_layers": 4,
|
31 |
+
"num_heads": 16,
|
32 |
+
"dropout": 0.5
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
# Helper functions to obtain all embeddings for a sequence
|
37 |
+
def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
|
38 |
+
esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
39 |
+
esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
|
40 |
+
mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
|
41 |
+
mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)
|
42 |
+
return esm_tokenizer, esm_model, mlm_model, mdlm_model
|
43 |
+
|
44 |
+
|
45 |
+
def get_latents(embedding_type, esm_model_path, mlm_model_path, mdlm_model_path, sequence, device):
|
46 |
+
tokenizer, esm_model, mlm_model, mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
|
47 |
+
|
48 |
+
if embedding_type == "esm":
|
49 |
+
model = esm_model
|
50 |
+
elif embedding_type == "mlm":
|
51 |
+
model = mlm_model
|
52 |
+
elif embedding_type == "mdlm":
|
53 |
+
model = mdlm_model
|
54 |
+
|
55 |
+
inputs = tokenizer(sequence.upper(), return_tensors="pt").to(device)['input_ids']
|
56 |
+
with torch.no_grad():
|
57 |
+
embeddings = model(inputs).last_hidden_state.squeeze(0)[1:-1]
|
58 |
+
|
59 |
+
return embeddings
|
60 |
+
|
61 |
+
|
62 |
+
# Dataset class that loads embeddings and labels
|
63 |
+
class SolubilityDataset(Dataset):
|
64 |
+
def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
|
65 |
+
self.data = pd.read_csv(csv_file).head(5)
|
66 |
+
#self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
|
67 |
+
self.embedding_type = embedding_type
|
68 |
+
self.esm_model_path = esm_model_path
|
69 |
+
self.mlm_model_path = mlm_model_path
|
70 |
+
self.mdlm_model_path = mdlm_model_path
|
71 |
+
self.device = device
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.data)
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
sequence = self.data.iloc[idx]['Sequence']
|
78 |
+
seq_len = len(sequence)
|
79 |
+
embeddings = get_latents(self.embedding_type, self.esm_model_path, self.mlm_model_path, self.mdlm_model_path,
|
80 |
+
sequence, self.device)
|
81 |
+
# Lowercase residues = soluble, uppercase = insoluble
|
82 |
+
label = [0 if residue.islower() else 1 for residue in sequence]
|
83 |
+
labels = torch.tensor(label, dtype=torch.float32)
|
84 |
+
|
85 |
+
return embeddings, labels, seq_len
|
86 |
+
|
87 |
+
# Transformer model class
|
88 |
+
class SolubilityPredictor(nn.Module):
|
89 |
+
def __init__(self, input_dim, hidden_dim, num_heads, num_layers, dropout):
|
90 |
+
super(SolubilityPredictor, self).__init__()
|
91 |
+
#self.embedding_dim = input_dim
|
92 |
+
# self.self_attention = nn.MultiheadAttention(input_dim, num_heads, dropout)
|
93 |
+
# encoder_layer = nn.TransformerEncoderLayer(
|
94 |
+
# d_model=hidden_dim,
|
95 |
+
# nhead=num_heads,
|
96 |
+
# dropout=dropout,
|
97 |
+
# batch_first=True
|
98 |
+
# )
|
99 |
+
# self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
100 |
+
self.classifier = nn.Sequential(
|
101 |
+
nn.Linear(input_dim, 320),
|
102 |
+
nn.ReLU(),
|
103 |
+
nn.Linear(320, 1)
|
104 |
+
)
|
105 |
+
self.sigmoid = nn.Sigmoid()
|
106 |
+
|
107 |
+
def forward(self, embeddings):
|
108 |
+
#attn_out, _ = self.self_attention(embeddings, embeddings, embeddings)
|
109 |
+
#transformer_out = self.transformer_encoder(attn_out)#.squeeze(1).mean(dim=1)
|
110 |
+
#logits = self.classifier(transformer_out)
|
111 |
+
|
112 |
+
logits = self.classifier(embeddings)
|
113 |
+
probs = self.sigmoid(logits.squeeze(-1))
|
114 |
+
|
115 |
+
return probs # Get probabilities of dimension seq_len
|
116 |
+
|
117 |
+
|
118 |
+
# Training function
|
119 |
+
def train(model, train_loader, val_loader, optimizer, criterion, device):
|
120 |
+
"""
|
121 |
+
Trains the model for a single epoch.
|
122 |
+
Args:
|
123 |
+
model (nn.Module): model that will be trained
|
124 |
+
dataloader (DataLoader): PyTorch DataLoader with training data
|
125 |
+
optimizer (torch.optim): optimizer
|
126 |
+
criterion (nn.Module): loss function
|
127 |
+
device (torch.device): device (GPU or CPU to train the model
|
128 |
+
Returns:
|
129 |
+
total_loss (float): model loss
|
130 |
+
"""
|
131 |
+
# Training loop
|
132 |
+
model.train()
|
133 |
+
train_loss = 0
|
134 |
+
|
135 |
+
prog_bar = tqdm(total=len(train_loader), leave=True, file=sys.stdout)
|
136 |
+
for step, batch in enumerate(train_loader, start=1):
|
137 |
+
embeddings, labels, seq_len = batch
|
138 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
139 |
+
embeddings = embeddings.squeeze(1)
|
140 |
+
optimizer.zero_grad()
|
141 |
+
outputs = model(embeddings)
|
142 |
+
loss = criterion(outputs, labels)
|
143 |
+
loss.backward()
|
144 |
+
optimizer.step()
|
145 |
+
train_loss += loss.item()
|
146 |
+
prog_bar.update()
|
147 |
+
sys.stdout.flush()
|
148 |
+
prog_bar.close()
|
149 |
+
|
150 |
+
# Validation loop
|
151 |
+
model.eval()
|
152 |
+
val_loss = 0.0
|
153 |
+
|
154 |
+
prog_bar = tqdm(total=len(val_loader), leave=True, file=sys.stdout)
|
155 |
+
for step, batch in enumerate(val_loader):
|
156 |
+
embeddings, labels, seq_len = batch
|
157 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
158 |
+
with torch.no_grad():
|
159 |
+
outputs = model(embeddings)
|
160 |
+
loss = criterion(outputs, labels)
|
161 |
+
val_loss += loss.item()
|
162 |
+
prog_bar.update()
|
163 |
+
sys.stdout.flush()
|
164 |
+
prog_bar.close()
|
165 |
+
|
166 |
+
return train_loss/len(train_loader), val_loss/len(val_loader)
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
# Evaluation function
|
171 |
+
def evaluate(model, dataloader, device):
|
172 |
+
"""
|
173 |
+
Performs inference on a trained model
|
174 |
+
Args:
|
175 |
+
model (nn.Module): the trained model
|
176 |
+
dataloader (DataLoader): PyTorch DataLoader with testing data
|
177 |
+
device (torch.device): device (GPU or CPU) to be used for inference
|
178 |
+
Returns:
|
179 |
+
preds (list): predicted per-residue disorder labels
|
180 |
+
true_labels (list): ground truth per-residue disorder labels
|
181 |
+
"""
|
182 |
+
model.eval()
|
183 |
+
preds, true_labels = [], []
|
184 |
+
with torch.no_grad():
|
185 |
+
for embeddings, labels, seq_len in tqdm(dataloader):
|
186 |
+
embeddings, labels = embeddings.to(device), labels.to(device)
|
187 |
+
outputs = model(embeddings)
|
188 |
+
preds.append(outputs.cpu().numpy())
|
189 |
+
true_labels.append(labels.cpu().numpy())
|
190 |
+
return preds, true_labels
|
191 |
+
|
192 |
+
# Metrics calculation
|
193 |
+
def calculate_metrics(preds, labels, threshold=0.5):
|
194 |
+
"""
|
195 |
+
Calculates metrics to assess model performance
|
196 |
+
Args:
|
197 |
+
preds (list): model's predictions
|
198 |
+
labels (list): ground truth labels
|
199 |
+
threshold (float): minimum threshold a prediction must be met to be considered disordered
|
200 |
+
Returns:
|
201 |
+
accuracy (float): accuracy
|
202 |
+
precision (float): precision
|
203 |
+
recall (float): recall
|
204 |
+
f1 (float): F1 score
|
205 |
+
roc_auc (float): AUROC score
|
206 |
+
"""
|
207 |
+
flat_binary_preds, flat_prob_preds, flat_labels = [], [], []
|
208 |
+
|
209 |
+
for pred, label in zip(preds, labels):
|
210 |
+
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
|
211 |
+
flat_prob_preds.extend(pred.flatten())
|
212 |
+
flat_labels.extend(label.flatten())
|
213 |
+
|
214 |
+
flat_binary_preds = np.array(flat_binary_preds)
|
215 |
+
flat_prob_preds = np.array(flat_prob_preds)
|
216 |
+
flat_labels = np.array(flat_labels)
|
217 |
+
|
218 |
+
accuracy = accuracy_score(flat_labels, flat_binary_preds)
|
219 |
+
precision = precision_score(flat_labels, flat_binary_preds)
|
220 |
+
recall = recall_score(flat_labels, flat_binary_preds)
|
221 |
+
f1 = f1_score(flat_labels, flat_binary_preds)
|
222 |
+
roc_auc = roc_auc_score(flat_labels, flat_prob_preds)
|
223 |
+
|
224 |
+
return accuracy, precision, recall, f1, roc_auc
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
229 |
+
print(device)
|
230 |
+
|
231 |
+
for embedding_type in ['mlm', 'esm', 'mdlm']:
|
232 |
+
best_val_loss = float('inf')
|
233 |
+
best_model = None
|
234 |
+
|
235 |
+
# Load train and test dataset
|
236 |
+
train_dataset = SolubilityDataset(embedding_type,
|
237 |
+
hyperparams['train_data'],
|
238 |
+
hyperparams['esm_model_path'],
|
239 |
+
hyperparams['mlm_model_path'],
|
240 |
+
hyperparams['mdlm_model_path'],
|
241 |
+
device)
|
242 |
+
test_dataset = SolubilityDataset(embedding_type,
|
243 |
+
hyperparams['test_data'],
|
244 |
+
hyperparams['esm_model_path'],
|
245 |
+
hyperparams['mlm_model_path'],
|
246 |
+
hyperparams['mdlm_model_path'],
|
247 |
+
device)
|
248 |
+
val_dataset = SolubilityDataset(embedding_type,
|
249 |
+
hyperparams['val_data'],
|
250 |
+
hyperparams['esm_model_path'],
|
251 |
+
hyperparams['mlm_model_path'],
|
252 |
+
hyperparams['mdlm_model_path'],
|
253 |
+
device)
|
254 |
+
|
255 |
+
# Load PyTorch datasets into DataLoaders
|
256 |
+
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
257 |
+
val_dataloader = DataLoader(val_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
258 |
+
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
259 |
+
|
260 |
+
# Set device to GPU
|
261 |
+
|
262 |
+
### Grid search to explore hyperparameter space
|
263 |
+
# Define hyperparameters
|
264 |
+
param_grid = {
|
265 |
+
'learning_rate': [5e-4],
|
266 |
+
'batch_size': [1],
|
267 |
+
'num_heads': [4],
|
268 |
+
'num_layers': [2],
|
269 |
+
'dropout': [0.5],
|
270 |
+
'num_epochs': [5]
|
271 |
+
}
|
272 |
+
|
273 |
+
# Loop over the parameter grid
|
274 |
+
grid = ParameterGrid(param_grid)
|
275 |
+
for params in grid:
|
276 |
+
# Update hyperparameters
|
277 |
+
hyperparams.update(params)
|
278 |
+
|
279 |
+
# Update model with the new set of hyperparms
|
280 |
+
input_dim=640 if embedding_type=="mdlm" else 1280
|
281 |
+
hidden_dim = input_dim
|
282 |
+
model = SolubilityPredictor(
|
283 |
+
input_dim=input_dim,
|
284 |
+
hidden_dim=hidden_dim,
|
285 |
+
num_layers=hyperparams["num_layers"],
|
286 |
+
num_heads=hyperparams["num_heads"],
|
287 |
+
dropout=hyperparams['dropout']
|
288 |
+
)
|
289 |
+
model = model.to(device) # Push model to GPU
|
290 |
+
|
291 |
+
# Update optimizer
|
292 |
+
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
293 |
+
criterion = nn.BCELoss()
|
294 |
+
num_epochs = hyperparams['num_epochs']
|
295 |
+
|
296 |
+
# Train
|
297 |
+
for epoch in range(hyperparams["num_epochs"]):
|
298 |
+
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
299 |
+
train_loss, val_loss = train(model, train_dataloader, val_dataloader, optimizer, criterion, device)
|
300 |
+
print(f"TRAIN LOSS: {train_loss:.4f}")
|
301 |
+
print(f"VALIDATION LOSS: {val_loss:.4f}\n")
|
302 |
+
sys.stdout.flush()
|
303 |
+
|
304 |
+
if val_loss < best_val_loss:
|
305 |
+
best_val_loss = val_loss
|
306 |
+
best_model = model.state_dict()
|
307 |
+
|
308 |
+
# Evaluate model on test sequences
|
309 |
+
print("TEST METRICS:")
|
310 |
+
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
311 |
+
test_metrics = calculate_metrics(test_preds, test_labels)
|
312 |
+
print(f"Accuracy: {test_metrics[0]:.4f}")
|
313 |
+
print(f"Precision: {test_metrics[1]:.4f}")
|
314 |
+
print(f"Recall: {test_metrics[2]:.4f}")
|
315 |
+
print(f"F1 Score: {test_metrics[3]:.4f}")
|
316 |
+
print(f"ROC AUC: {test_metrics[4]:.4f}")
|
317 |
+
print(f"\n")
|
318 |
+
sys.stdout.flush()
|
319 |
+
|
320 |
+
### Save model and metrics for this hyperparameter combination
|
321 |
+
folder_name = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}/lr{hyperparams['learning_rate']}_bs{hyperparams['batch_size']}_epochs{hyperparams['num_epochs']}_layers{hyperparams['num_layers']}_heads{hyperparams['num_heads']}_drpt{hyperparams['dropout']}"
|
322 |
+
os.makedirs(folder_name, exist_ok=True)
|
323 |
+
|
324 |
+
# Save current model for this hyperparameter combination
|
325 |
+
model_file_path = os.path.join(folder_name, "model.pth")
|
326 |
+
torch.save(model.state_dict(), model_file_path)
|
327 |
+
|
328 |
+
# Save hyperparameters and test metrics to txt file
|
329 |
+
output_file_path = os.path.join(folder_name, "hyperparams_and_test_results.txt")
|
330 |
+
with open(output_file_path, 'w') as out_file:
|
331 |
+
for key, value in hyperparams.items():
|
332 |
+
out_file.write(f"{key}: {value}\n")
|
333 |
+
|
334 |
+
out_file.write("\nTEST METRICS:\n")
|
335 |
+
out_file.write(f"Accuracy: {test_metrics[0]:.4f}\n")
|
336 |
+
out_file.write(f"Precision: {test_metrics[1]:.4f}\n")
|
337 |
+
out_file.write(f"Recall: {test_metrics[2]:.4f}\n")
|
338 |
+
out_file.write(f"F1 Score: {test_metrics[3]:.4f}\n")
|
339 |
+
out_file.write(f"ROC AUC: {test_metrics[4]:.4f}\n")
|
340 |
+
|
341 |
+
# Save the best model and its hyperparameters
|
342 |
+
if best_model is not None:
|
343 |
+
best_model_dir = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}"
|
344 |
+
os.makedirs(best_model_dir, exist_ok=True)
|
345 |
+
best_model_path = os.path.join(best_model_dir, "best_model.pth")
|
346 |
+
torch.save(best_model, best_model_path)
|
347 |
+
|
348 |
+
# Save the hyperparameters for the best model
|
349 |
+
best_hyperparams_path = f"{path}/benchmarks/Supervised/Solubility/transformer_models/{embedding_type}/best_model_hyperparams.txt"
|
350 |
+
with open(best_hyperparams_path, 'w') as out_file:
|
351 |
+
out_file.write("Best Validation Loss: {:.4f}\n".format(best_val_loss))
|
352 |
+
for key, value in hyperparams.items():
|
353 |
+
out_file.write(f"{key}: {value}\n")
|