MeMDLM / pl_data_loader.py
sgoel30's picture
Upload 12 files
d061944 verified
raw
history blame
26.4 kB
import functools
import itertools
import json
import math
import os
import re
import shutil
import typing
import urllib
import zipfile
import datasets
import fsspec
import requests
import tokenizers
import torch
import transformers
import utils
LOGGER = utils.get_logger(__name__)
def wt_detokenizer(string):
# contractions
string = string.replace("s '", "s'")
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
# number separators
string = string.replace(" @-@ ", "-")
string = string.replace(" @,@ ", ",")
string = string.replace(" @.@ ", ".")
# punctuation
string = string.replace(" : ", ": ")
string = string.replace(" ; ", "; ")
string = string.replace(" . ", ". ")
string = string.replace(" ! ", "! ")
string = string.replace(" ? ", "? ")
string = string.replace(" , ", ", ")
# double brackets
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
# miscellaneous
string = string.replace("= = = =", "====")
string = string.replace("= = =", "===")
string = string.replace("= =", "==")
string = string.replace(" " + chr(176) + " ", chr(176))
string = string.replace(" \n", "\n")
string = string.replace("\n ", "\n")
string = string.replace(" N ", " 1 ")
string = string.replace(" 's", "'s")
return string
def ptb_detokenizer(x):
x = x.replace(" 's", "'s")
x = x.replace("s ' ", "s' ")
x = x.replace(" n't", "n't")
x = x.replace(" \n ", "\n")
x = x.replace("\\/", "/")
for _ in range(10):
x = x.replace(" N ", " 1 ")
x = x.replace("$ 1", "$1")
x = x.replace("# 1", "#1")
x = x.replace("<unk>", "?")
return x
def lm1b_detokenizer(x):
x = x.replace('http : / / ', 'http://')
x = x.replace('https : / / ', 'https://')
x = re.sub(r' \'(\w+)', r"'\1", x)
x = re.sub(r' (\w+) \. ', r' \1. ', x)
x = re.sub(r' (\w+) \.$', r' \1.', x)
x = x.replace(' ? ', '? ')
x = re.sub(r' \?$', '?', x)
x = x.replace(' ! ', '! ')
x = re.sub(r' \!$', '!', x)
x = x.replace(' , ', ', ')
x = x.replace(' : ', ': ')
x = x.replace(' ; ', '; ')
x = x.replace(' / ', '/')
x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x)
x = re.sub(r'\' ([^\']+) \'', r"'\1'", x)
x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x)
x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x)
x = x.replace('$ ', '$')
x = x.replace('£ ', '£')
return x
def lambada_detokenizer(text):
text = text.replace("“", '"')
text = text.replace("”", '"')
return '\n'+text.strip()
def scientific_papers_detokenizer(x):
x = wt_detokenizer(x)
x = lm1b_detokenizer(x)
return x
class Text8Tokenizer(transformers.PreTrainedTokenizer):
def __init__(
self,
bos_token='[BOS]',
eos_token='[EOS]',
sep_token='[SEP]',
cls_token='[CLS]',
pad_token='[PAD]',
mask_token='[MASK]',
unk_token='[UNK]',
**kwargs):
self.characters = list('abcdefghijklmnopqrstuvwxyz ')
self._vocab_str_to_int = {
'[CLS]': 0,
'[SEP]': 1,
'[BOS]': 2,
'[EOS]': 3,
'[MASK]': 4,
'[PAD]': 5,
'[RESERVED]': 6,
'[UNK]': 7,
** {ch: i + 8 for i, ch in enumerate(self.characters)}}
self._vocab_int_to_str = {
v: k for k, v in self._vocab_str_to_int.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
unk_token=unk_token,
**kwargs)
@property
def vocab_size(self) -> int:
return len(self._vocab_str_to_int)
def _tokenize(self, text: str, **kwargs) -> typing.List[str]:
return list(text.lower())
def _convert_token_to_id(self, token: str) -> int:
return self._vocab_str_to_int.get(
token, self._vocab_str_to_int['[UNK]'])
def _convert_id_to_token(self, index: int) -> str:
return self._vocab_int_to_str[index]
def convert_tokens_to_string(self, tokens):
return ''.join(tokens)
def get_vocab(self) -> typing.Dict[str, int]:
return self._vocab_str_to_int
def get_lambada_test_dataset():
url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl"
def read_jsonl_to_list(url):
response = requests.get(url, stream=True)
data_list = []
# Process each line in the response content
for line in response.iter_lines(decode_unicode=True):
if line:
data = json.loads(line)
data_list.append(data)
return data_list
lambada_data = read_jsonl_to_list(url)
dataset = datasets.Dataset.from_list(lambada_data)
return dataset
def get_text8_dataset(cache_dir, max_seq_length=256,
drop_last=True, crop_train=False):
"""Adapted from:
https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344
Args:
cache_dir: str, path to cache directory.
max_seq_length: int, maximum length of sequences.
(default: 256, as in D3PM codebase.)
drop_last: bool, whether to drop the last incomplete
batch. (default: True, as in D3PM codebase.)
crop_train: bool, whether to subsample contiguous
subsequences from training example. serves to
make sure transformer models with absolute position
embeddings do not have incorrect position-wise
marginals. (default: False, but necessary to match D3PM AR)
Returns:
dataset: dataset.DatasetDict, with keys 'train',
'valid', 'test'.
"""
url = 'http://mattmahoney.net/dc/text8.zip'
if not crop_train:
cache_dir = f'{cache_dir}/text8'
else:
cache_dir = f'{cache_dir}/text8-crop-train'
split_names = ['train', 'validation', 'test']
if not all([
utils.fsspec_exists(os.path.join(cache_dir, split))
for split in split_names
]):
# Check if raw data exists
raw_cache_dir = os.path.join(cache_dir, 'raw_data')
if not all([
utils.fsspec_exists(
os.path.join(raw_cache_dir, f'text8.{split}.txt'))
for split in split_names
]):
if not utils.fsspec_exists(
os.path.join(raw_cache_dir, 'text8.zip')):
utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True)
LOGGER.info('Downloading text8 from URL {}.'.format(url))
with urllib.request.urlopen(url) as in_stream:
with open(os.path.join(raw_cache_dir, 'text8.zip'), 'wb') as out_file:
shutil.copyfileobj(in_stream, out_file)
with fsspec.open(
os.path.join(raw_cache_dir, 'text8.zip'),
'rb') as f:
rawdata = zipfile.ZipFile(f).read(
'text8').decode('utf-8')
# Splits taken from D3PM codebase
splits = {
'train': rawdata[:90000000],
'validation': rawdata[90000000: 95000000],
'test': rawdata[95000000:],
}
for split, data in splits.items():
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'w') as f:
f.write(data)
else:
splits = {}
for split in split_names:
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'r') as f:
splits[split] = f.read()
# Chunk and save as datasets.DatasetDict
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
dataset_dict = {}
for k, v in splits.items():
if k == 'train' and crop_train == True:
chunk_size = 2 * max_seq_length
else:
chunk_size = max_seq_length
text = list(chunks(v, chunk_size))
if drop_last and len(text[-1]) < chunk_size:
text = text[:-1]
dataset_dict[k] = datasets.Dataset.from_dict({'text': text})
dataset = datasets.DatasetDict(dataset_dict)
dataset.save_to_disk(cache_dir)
else:
dataset = datasets.load_from_disk(cache_dir)
return dataset
def _group_texts(examples, block_size, bos, eos):
# Concatenate all texts.
concatenated_examples = list(itertools.chain(* examples['input_ids']))
total_length = len(concatenated_examples)
# TODO(yair): look into not dropping the remainder but rather padding it.
# We drop the small remainder, and if the total_length < block_size - 2
# we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of
# this drop, you can customize this part to your needs.
new_block_size = block_size - 2 # [BOS] and [EOS] to be added
total_length = (total_length // new_block_size) * new_block_size
# Split by chunks of max_len.
result = {}
_values = []
_attn_masks = []
for i in range(0, total_length, new_block_size):
_values.append(
[bos]
+ concatenated_examples[i : i + new_block_size]
+ [eos])
_attn_masks.append(torch.ones(block_size))
result['input_ids'] = _values
result['attention_mask'] = _attn_masks
return result
def get_dataset(
dataset_name, tokenizer, wrap, mode, cache_dir,
block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False):
if wrap:
filename = f'{dataset_name}_{mode}_bs{block_size}_wrapped.dat'
else:
filename = f'{dataset_name}_{mode}_bs{block_size}_unwrapped.dat'
_path = os.path.join(cache_dir, filename)
if utils.fsspec_exists(_path):
LOGGER.info(f'Loading data from: {_path}')
return datasets.load_from_disk(_path).with_format('torch')
LOGGER.info(f'Generating new data at: {_path}')
crop_train = dataset_name == 'text8-crop'
if mode == 'train' and crop_train:
# double block size for sub-sampling
block_size *= 2
if dataset_name == 'wikitext103':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-103-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'wikitext2':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-2-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'ptb':
dataset = datasets.load_dataset(
'ptb_text_only', cache_dir=cache_dir)
elif dataset_name == 'lambada':
dataset = get_lambada_test_dataset()
elif dataset_name == 'text8':
assert wrap
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size)
elif dataset_name == 'text8-crop':
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size, crop_train=True)
elif dataset_name == 'openwebtext-train':
dataset = datasets.load_dataset(
'openwebtext',
split='train[:-100000]',
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'openwebtext-valid':
dataset = datasets.load_dataset(
'openwebtext',
split='train[-100000:]',
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_arxiv':
dataset = datasets.load_dataset(
'scientific_papers', 'arxiv',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_pubmed':
dataset = datasets.load_dataset(
'scientific_papers', 'pubmed',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'ag_news':
dataset = datasets.load_dataset(
'ag_news',
cache_dir=cache_dir,
streaming=streaming)
else:
dataset = datasets.load_dataset(
dataset_name,
cache_dir=cache_dir,
streaming=streaming)
if dataset_name in ['lambada', 'openwebtext-train',
'openwebtext-valid']:
data = dataset
else:
data = dataset[mode]
if dataset_name.startswith('wikitext'):
detokenizer = wt_detokenizer
elif dataset_name == 'ptb':
detokenizer = ptb_detokenizer
elif dataset_name == 'lm1b':
detokenizer = lm1b_detokenizer
elif dataset_name == 'lambada':
detokenizer = lambada_detokenizer
elif dataset_name.startswith('scientific_papers'):
detokenizer = scientific_papers_detokenizer
else:
detokenizer = None
def _apply_detokenizer(detokenizer):
def detok(text):
for i, t in enumerate(text, 0):
text[i] = detokenizer(t)
return text
return detok
EOS = tokenizer.encode(tokenizer.eos_token)[0]
BOS = tokenizer.encode(tokenizer.bos_token)[0]
def preprocess_and_tokenize(example):
if dataset_name == 'ptb':
text = example['sentence']
elif 'scientific_papers' in dataset_name:
text = example['article']
else:
text = example['text']
if detokenizer is not None:
text = _apply_detokenizer(detokenizer)(text)
tokenizer.padding_side = 'right'
tokenizer.truncation_side = 'right'
if wrap:
tokens = tokenizer(text,
add_special_tokens=False,
return_attention_mask=False,
return_token_type_ids=False)
tokens = {'input_ids':
[t + [EOS] for t in tokens['input_ids']]}
# Still missing BOS, but will be added in group_texts
else:
tokens = tokenizer(text,
max_length=block_size,
padding='max_length',
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_token_type_ids=True)
return tokens
if streaming:
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True,
desc='Tokenizing')
else:
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Tokenizing')
if dataset_name == 'ptb':
tokenized_dataset = tokenized_dataset.remove_columns(
'sentence')
elif 'scientific_papers' in dataset_name:
tokenized_dataset = tokenized_dataset.remove_columns([
'article', 'abstract', 'section_names'])
elif dataset_name == 'ag_news':
tokenized_dataset = tokenized_dataset.remove_columns(
['text', 'label'])
else:
tokenized_dataset = tokenized_dataset.remove_columns(
'text')
if not wrap:
tokenized_dataset.save_to_disk(_path)
return tokenized_dataset.with_format('torch')
group_texts = functools.partial(
_group_texts, block_size=block_size, bos=BOS, eos=EOS)
if streaming:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True,
desc='Grouping')
else:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Grouping')
chunked_dataset.save_to_disk(_path)
chunked_dataset = chunked_dataset.with_format('torch')
return chunked_dataset
def get_tokenizer(config):
if config.data.tokenizer_name_or_path == 'text8':
tokenizer = Text8Tokenizer()
elif config.data.tokenizer_name_or_path == 'bert-base-uncased':
tokenizer = transformers.BertTokenizer.\
from_pretrained('bert-base-uncased')
else:
tokenizer = transformers.AutoTokenizer.from_pretrained(
config.data.tokenizer_name_or_path)
if (isinstance(tokenizer, transformers.GPT2TokenizerFast)
or isinstance(tokenizer, transformers.GPT2Tokenizer)):
tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing(
(tokenizer.bos_token, tokenizer.bos_token_id),
(tokenizer.eos_token, tokenizer.eos_token_id))
# For wrapped batches:
# [BOS] sent1 [EOS] sent2-fragment [EOS]
# [BOS] sent2-fragment [EOS] sent3 [EOS]
if tokenizer.bos_token is None:
if tokenizer.cls_token is None:
raise AttributeError(
'Tokenizer must have a bos_token or '
f'cls_token: {tokenizer}')
tokenizer.bos_token = tokenizer.cls_token
if tokenizer.eos_token is None:
if tokenizer.sep_token is None:
raise AttributeError(
'Tokenizer must have a eos_token '
f'or sep_token: {tokenizer}')
tokenizer.eos_token = tokenizer.sep_token
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
return tokenizer
def get_dataloaders(config, tokenizer, skip_train=False,
skip_valid=False, valid_seed=None):
num_gpus = torch.cuda.device_count()
assert (config.loader.global_batch_size
== (config.loader.batch_size
* config.trainer.num_nodes
* num_gpus
* config.trainer.accumulate_grad_batches))
if config.loader.global_batch_size % (
num_gpus * config.trainer.accumulate_grad_batches) != 0:
raise ValueError(
f'Train Batch Size {config.training.batch_size}'
f'not divisible by {num_gpus} gpus with accumulation '
f'{config.trainer.accumulate_grad_batches}.')
if config.loader.eval_global_batch_size % num_gpus != 0:
raise ValueError(
f'Eval Batch Size for {config.eval.batch_size} '
f'not divisible by {num_gpus}.')
if skip_train:
train_set = None
else:
train_set = get_dataset(
config.data.train,
tokenizer,
mode='train',
wrap=config.data.wrap,
#cache_dir=config.data.cache_dir,
block_size=config.model.length)
if config.data.valid in ['text8', 'lm1b', 'ag_news']:
validation_split = 'test'
else:
validation_split = 'validation'
if skip_valid:
valid_set = None
else:
valid_set = get_dataset(
config.data.valid,
tokenizer,
wrap=config.data.wrap,
mode=validation_split,
#cache_dir=config.data.cache_dir,
block_size=config.model.length,
streaming=False)
if skip_train:
train_loader = None
else:
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=config.loader.batch_size,
num_workers=config.loader.num_workers,
pin_memory=config.loader.pin_memory,
shuffle=not config.data.streaming,
persistent_workers=True)
train_loader.tokenizer = tokenizer
if skip_valid:
valid_loader = None
else:
if valid_seed is None:
shuffle_valid = False
generator = None
else:
shuffle_valid = True
generator = torch.Generator().manual_seed(valid_seed)
valid_loader = torch.utils.data.DataLoader(
valid_set,
batch_size=config.loader.eval_batch_size,
num_workers=config.loader.num_workers,
pin_memory=config.loader.pin_memory,
shuffle=shuffle_valid,
generator=generator)
# Will be used in generative perplexity calculation
valid_loader.tokenizer = tokenizer
return train_loader, valid_loader
# Samplers adapted from: https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/fault_tolerant_sampler.py
class RandomFaultTolerantSampler(torch.utils.data.RandomSampler):
def __init__(self, *args, generator=None, **kwargs):
# TD [2022-07-17]: We don't force the seed to be zero. We generate random seed,
# which should be reproducible if pl.seed_everything was called beforehand.
# This means that changing the seed of the experiment will also change the
# sampling order.
if generator is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
generator = torch.Generator().manual_seed(seed)
kwargs.pop('shuffle', None)
super().__init__(*args, generator=generator, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {'random_state': self.generator.get_state(),
'counter': self.counter}
def load_state_dict(self, state_dict):
self.generator.set_state(state_dict.get('random_state'))
self.counter = state_dict['counter']
# self.start_counter = self.counter
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self) -> typing.Iterator[int]:
n = len(self.data_source)
self.state = self.generator.get_state()
indices = torch.randperm(n, generator=self.generator).tolist()
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter:]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {'epoch': self.epoch, 'counter': self.counter}
def load_state_dict(self, state_dict):
self.epoch = state_dict['epoch']
self.counter = state_dict['counter']
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(
padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter:]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
from torch.utils.data import Dataset, DataLoader
import lightning.pytorch as pl
from functools import partial
import sys
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, dataset, indices):
self.dataset = dataset
self.indices = indices
def __len__(self):
return len(self.indices)
def __getitem__(self, idx):
actual_idx = int(self.indices[idx])
item = self.dataset[actual_idx]
return item
def membrane_collate_fn(batch, tokenizer):
"""Custom data collator that masks TM/soluble residues for focused training"""
MAX_LENGTH = 1024
sequences = [item['Sequence'].upper() for item in batch]
masks = []
for item in batch:
if item["Label"] == 0:
mask = [1 if i.isupper() else 0 for i in item["Sequence"]]
else:
mask = [0 if i.isupper() else 1 for i in item["Sequence"]]
mask = [1] + mask
if len(mask) > MAX_LENGTH: # Truncate
mask = mask[:MAX_LENGTH]
elif len(mask) < MAX_LENGTH: # Pad
mask += [1] * (MAX_LENGTH - len(mask))
masks.append(torch.as_tensor(mask))
mask_t = torch.stack(masks, dim=0)
tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=MAX_LENGTH)
return {
'input_ids': tokens['input_ids'],
'attention_mask': tokens['attention_mask'],
'mask': mask_t
}
def wrap_collate_fn(batch, tokenizer):
"""Standard data collator that wraps sequences over padding them"""
# Define sequence size
chunk_size = 1024
eos_placeholder = "k"
eos = "<eos>"
# Wrap sequences by collecting and splitting them into chunks
# From MDLM paper: insert <eos> at start/end of chunks and in between sequences
sequences = eos_placeholder.join([item['Sequence'].upper() for item in batch])
sequences = eos_placeholder + sequences + eos_placeholder
wrapped_sequences = [sequences[i:i+chunk_size] for i in range(0, len(sequences), chunk_size)]
for idx, seq in enumerate(wrapped_sequences):
wrapped_sequences[idx] = seq.replace(eos_placeholder, eos)
# Tokenize for input ids and attention masks
tokens = tokenizer(wrapped_sequences, return_tensors='pt', padding=True)
return {
"input_ids": tokens['input_ids'],
"attention_mask": tokens['attention_mask']
}
def collate_fn(batch, tokenizer):
"""Standard data collator that truncates/pad sequences based on max_length"""
sequences = [item['Sequence'].upper() for item in batch]
max_len = max([len(seq) for seq in sequences])
#labels = torch.tensor([item['labels'] for item in batch], dtype=torch.float32)
tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=1024)
#attention_masks = torch.ones(tokens.size()[:2], dtype=torch.bool)
return {
'input_ids': tokens['input_ids'],
'attention_mask': tokens['attention_mask']
}
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_dataset, val_dataset, test_dataset, tokenizer, batch_size: int=8, collate_fn=collate_fn):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
self.collate_fn = collate_fn
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)