--- base_model: mistralai/Mistral-7B-Instruct-v0.1 library_name: peft license: apache-2.0 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: mistral_gsm8k_per_class_reflect_lora results: [] --- # mistral_gsm8k_per_class_reflect_lora This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9638 | 0.7692 | 5 | 0.7346 | | 0.6247 | 1.5385 | 10 | 0.6349 | | 0.5318 | 2.3077 | 15 | 0.6109 | | 0.4704 | 3.0769 | 20 | 0.6076 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1