Commit
·
5b9b0ed
1
Parent(s):
7abe9d0
loading model from local and remove depth control net
Browse files
{checkpoints → .checkpoints/ControlNetModel}/config.json
RENAMED
File without changes
|
{checkpoints → .checkpoints/ControlNetModel}/diffusion_pytorch_model.safetensors
RENAMED
File without changes
|
{checkpoints → .checkpoints}/ip-adapter.bin
RENAMED
File without changes
|
checkpoints/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
handler.py
CHANGED
@@ -1,16 +1,3 @@
|
|
1 |
-
# from typing import List, Any
|
2 |
-
# import torch
|
3 |
-
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline
|
4 |
-
|
5 |
-
# # Configurar el dispositivo para ejecutar el modelo
|
6 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
-
# if device.type != 'cuda':
|
8 |
-
# raise ValueError("Se requiere ejecutar en GPU")
|
9 |
-
|
10 |
-
# # Configurar el tipo de dato mixto basado en la capacidad de la GPU
|
11 |
-
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16
|
12 |
-
|
13 |
-
# start_test
|
14 |
import cv2
|
15 |
import numpy as np
|
16 |
|
@@ -45,31 +32,31 @@ dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
|
45 |
|
46 |
class EndpointHandler():
|
47 |
def __init__(self, model_dir):
|
48 |
-
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
49 |
-
hf_hub_download(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
55 |
|
56 |
print("Model dir: ", model_dir)
|
57 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
58 |
controlnet_path = f"./checkpoints/ControlNetModel"
|
59 |
|
60 |
-
transform = Compose([
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
])
|
73 |
|
74 |
self.controlnet_identitynet = ControlNetModel.from_pretrained(
|
75 |
controlnet_path, torch_dtype=dtype
|
@@ -103,7 +90,7 @@ class EndpointHandler():
|
|
103 |
# controlnet-pose/canny/depth
|
104 |
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
|
105 |
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
|
106 |
-
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
|
107 |
|
108 |
controlnet_pose = ControlNetModel.from_pretrained(
|
109 |
controlnet_pose_model, torch_dtype=dtype
|
@@ -111,49 +98,49 @@ class EndpointHandler():
|
|
111 |
controlnet_canny = ControlNetModel.from_pretrained(
|
112 |
controlnet_canny_model, torch_dtype=dtype
|
113 |
).to(device)
|
114 |
-
controlnet_depth = ControlNetModel.from_pretrained(
|
115 |
-
|
116 |
-
).to(device)
|
117 |
|
118 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
119 |
-
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
|
120 |
|
121 |
def get_canny_image(image, t1=100, t2=200):
|
122 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
123 |
edges = cv2.Canny(image, t1, t2)
|
124 |
return Image.fromarray(edges, "L")
|
125 |
|
126 |
-
def get_depth_map(image):
|
127 |
|
128 |
-
|
129 |
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
self.controlnet_map = {
|
148 |
"pose": controlnet_pose,
|
149 |
"canny": controlnet_canny,
|
150 |
-
"depth": controlnet_depth,
|
151 |
}
|
152 |
|
153 |
self.controlnet_map_fn = {
|
154 |
"pose": openpose,
|
155 |
"canny": get_canny_image,
|
156 |
-
"depth": get_depth_map,
|
157 |
}
|
158 |
|
159 |
self.app = FaceAnalysis(name="buffalo_l", root="./", providers=["CPUExecutionProvider"])
|
@@ -167,8 +154,9 @@ class EndpointHandler():
|
|
167 |
identitynet_strength_ratio = 0.8
|
168 |
pose_strength = 0.4
|
169 |
canny_strength = 0.3
|
170 |
-
depth_strength = 0.5
|
171 |
-
controlnet_selection = ["pose", "canny"
|
|
|
172 |
|
173 |
face_image_path = "https://i.ibb.co/SKg69dD/kaifu-resize.png"
|
174 |
pose_image_path = "https://i.ibb.co/ZSrQ8ZJ/pose.jpg"
|
@@ -279,7 +267,7 @@ class EndpointHandler():
|
|
279 |
controlnet_scales = {
|
280 |
"pose": pose_strength,
|
281 |
"canny": canny_strength,
|
282 |
-
"depth": depth_strength,
|
283 |
}
|
284 |
self.pipe.controlnet = MultiControlNetModel(
|
285 |
[self.controlnet_identitynet]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
|
|
|
32 |
|
33 |
class EndpointHandler():
|
34 |
def __init__(self, model_dir):
|
35 |
+
# hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
36 |
+
# hf_hub_download(
|
37 |
+
# repo_id="InstantX/InstantID",
|
38 |
+
# filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
39 |
+
# local_dir="./checkpoints",
|
40 |
+
# )
|
41 |
+
# hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
42 |
|
43 |
print("Model dir: ", model_dir)
|
44 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
45 |
controlnet_path = f"./checkpoints/ControlNetModel"
|
46 |
|
47 |
+
# transform = Compose([
|
48 |
+
# Resize(
|
49 |
+
# width=518,
|
50 |
+
# height=518,
|
51 |
+
# resize_target=False,
|
52 |
+
# keep_aspect_ratio=True,
|
53 |
+
# ensure_multiple_of=14,
|
54 |
+
# resize_method='lower_bound',
|
55 |
+
# image_interpolation_method=cv2.INTER_CUBIC,
|
56 |
+
# ),
|
57 |
+
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
58 |
+
# PrepareForNet(),
|
59 |
+
# ])
|
60 |
|
61 |
self.controlnet_identitynet = ControlNetModel.from_pretrained(
|
62 |
controlnet_path, torch_dtype=dtype
|
|
|
90 |
# controlnet-pose/canny/depth
|
91 |
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
|
92 |
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
|
93 |
+
# controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
|
94 |
|
95 |
controlnet_pose = ControlNetModel.from_pretrained(
|
96 |
controlnet_pose_model, torch_dtype=dtype
|
|
|
98 |
controlnet_canny = ControlNetModel.from_pretrained(
|
99 |
controlnet_canny_model, torch_dtype=dtype
|
100 |
).to(device)
|
101 |
+
# controlnet_depth = ControlNetModel.from_pretrained(
|
102 |
+
# controlnet_depth_model, torch_dtype=dtype
|
103 |
+
# ).to(device)
|
104 |
|
105 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
106 |
+
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
|
107 |
|
108 |
def get_canny_image(image, t1=100, t2=200):
|
109 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
110 |
edges = cv2.Canny(image, t1, t2)
|
111 |
return Image.fromarray(edges, "L")
|
112 |
|
113 |
+
# def get_depth_map(image):
|
114 |
|
115 |
+
# image = np.array(image) / 255.0
|
116 |
|
117 |
+
# h, w = image.shape[:2]
|
118 |
|
119 |
+
# image = transform({'image': image})['image']
|
120 |
+
# image = torch.from_numpy(image).unsqueeze(0).to("cuda")
|
121 |
|
122 |
+
# with torch.no_grad():
|
123 |
+
# depth = depth_anything(image)
|
124 |
|
125 |
+
# depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
|
126 |
+
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
127 |
|
128 |
+
# depth = depth.cpu().numpy().astype(np.uint8)
|
129 |
|
130 |
+
# depth_image = Image.fromarray(depth)
|
131 |
|
132 |
+
# return depth_image
|
133 |
|
134 |
self.controlnet_map = {
|
135 |
"pose": controlnet_pose,
|
136 |
"canny": controlnet_canny,
|
137 |
+
# "depth": controlnet_depth,
|
138 |
}
|
139 |
|
140 |
self.controlnet_map_fn = {
|
141 |
"pose": openpose,
|
142 |
"canny": get_canny_image,
|
143 |
+
# "depth": get_depth_map,
|
144 |
}
|
145 |
|
146 |
self.app = FaceAnalysis(name="buffalo_l", root="./", providers=["CPUExecutionProvider"])
|
|
|
154 |
identitynet_strength_ratio = 0.8
|
155 |
pose_strength = 0.4
|
156 |
canny_strength = 0.3
|
157 |
+
# depth_strength = 0.5
|
158 |
+
controlnet_selection = ["pose", "canny"]
|
159 |
+
# controlnet_selection = ["pose", "canny", "depth"]
|
160 |
|
161 |
face_image_path = "https://i.ibb.co/SKg69dD/kaifu-resize.png"
|
162 |
pose_image_path = "https://i.ibb.co/ZSrQ8ZJ/pose.jpg"
|
|
|
267 |
controlnet_scales = {
|
268 |
"pose": pose_strength,
|
269 |
"canny": canny_strength,
|
270 |
+
# "depth": depth_strength,
|
271 |
}
|
272 |
self.pipe.controlnet = MultiControlNetModel(
|
273 |
[self.controlnet_identitynet]
|