|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger("dinov2") |
|
|
|
|
|
try: |
|
from xformers.ops import cross_entropy |
|
|
|
def lossfunc(t, s, temp): |
|
s = s.float() |
|
t = t.float() |
|
if s.ndim == 2: |
|
return -cross_entropy(s.unsqueeze(0), t.unsqueeze(0), temp, bw_inplace=True).squeeze(0) |
|
elif s.ndim == 3: |
|
return -cross_entropy(s, t, temp, bw_inplace=True) |
|
|
|
except ImportError: |
|
|
|
def lossfunc(t, s, temp): |
|
return torch.sum(t * F.log_softmax(s / temp, dim=-1), dim=-1) |
|
|
|
|
|
class iBOTPatchLoss(nn.Module): |
|
def __init__(self, patch_out_dim, student_temp=0.1, center_momentum=0.9): |
|
super().__init__() |
|
self.student_temp = student_temp |
|
self.center_momentum = center_momentum |
|
self.register_buffer("center", torch.zeros(1, 1, patch_out_dim)) |
|
self.updated = True |
|
self.reduce_handle = None |
|
self.len_teacher_patch_tokens = None |
|
self.async_batch_center = None |
|
|
|
@torch.no_grad() |
|
def softmax_center_teacher(self, teacher_patch_tokens, teacher_temp): |
|
self.apply_center_update() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return F.softmax((teacher_patch_tokens - self.center) / teacher_temp, dim=-1) |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_masked_patches_tensor, n_iterations=3): |
|
teacher_output = teacher_output.float() |
|
|
|
Q = torch.exp(teacher_output / teacher_temp).t() |
|
|
|
B = n_masked_patches_tensor |
|
dist.all_reduce(B) |
|
K = Q.shape[0] |
|
|
|
|
|
sum_Q = torch.sum(Q) |
|
if dist.is_initialized(): |
|
dist.all_reduce(sum_Q) |
|
Q /= sum_Q |
|
|
|
for it in range(n_iterations): |
|
|
|
sum_of_rows = torch.sum(Q, dim=1, keepdim=True) |
|
if dist.is_initialized(): |
|
dist.all_reduce(sum_of_rows) |
|
Q /= sum_of_rows |
|
Q /= K |
|
|
|
|
|
Q /= torch.sum(Q, dim=0, keepdim=True) |
|
Q /= B |
|
|
|
Q *= B |
|
return Q.t() |
|
|
|
def forward(self, student_patch_tokens, teacher_patch_tokens, student_masks_flat): |
|
""" |
|
Cross-entropy between softmax outputs of the teacher and student networks. |
|
student_patch_tokens: (B, N, D) tensor |
|
teacher_patch_tokens: (B, N, D) tensor |
|
student_masks_flat: (B, N) tensor |
|
""" |
|
t = teacher_patch_tokens |
|
s = student_patch_tokens |
|
loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1) |
|
loss = torch.sum(loss * student_masks_flat.float(), dim=-1) / student_masks_flat.sum(dim=-1).clamp(min=1.0) |
|
return -loss.mean() |
|
|
|
def forward_masked( |
|
self, |
|
student_patch_tokens_masked, |
|
teacher_patch_tokens_masked, |
|
student_masks_flat, |
|
n_masked_patches=None, |
|
masks_weight=None, |
|
): |
|
t = teacher_patch_tokens_masked |
|
s = student_patch_tokens_masked |
|
|
|
loss = lossfunc(t, s, self.student_temp) |
|
if masks_weight is None: |
|
masks_weight = ( |
|
(1 / student_masks_flat.sum(-1).clamp(min=1.0)) |
|
.unsqueeze(-1) |
|
.expand_as(student_masks_flat)[student_masks_flat] |
|
) |
|
if n_masked_patches is not None: |
|
loss = loss[:n_masked_patches] |
|
loss = loss * masks_weight |
|
return -loss.sum() / student_masks_flat.shape[0] |
|
|
|
@torch.no_grad() |
|
def update_center(self, teacher_patch_tokens): |
|
self.reduce_center_update(teacher_patch_tokens) |
|
|
|
@torch.no_grad() |
|
def reduce_center_update(self, teacher_patch_tokens): |
|
self.updated = False |
|
self.len_teacher_patch_tokens = len(teacher_patch_tokens) |
|
self.async_batch_center = torch.sum(teacher_patch_tokens.mean(1), dim=0, keepdim=True) |
|
if dist.is_initialized(): |
|
self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True) |
|
|
|
@torch.no_grad() |
|
def apply_center_update(self): |
|
if self.updated is False: |
|
world_size = dist.get_world_size() if dist.is_initialized() else 1 |
|
|
|
if self.reduce_handle is not None: |
|
self.reduce_handle.wait() |
|
_t = self.async_batch_center / (self.len_teacher_patch_tokens * world_size) |
|
|
|
self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum) |
|
|
|
self.updated = True |
|
|