InstantID / handler.py
yamildiego's picture
antelopev2
874c9b5
raw
history blame
11.6 kB
import cv2
import numpy as np
import diffusers
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
from style_template import styles
from PIL import Image
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Mars"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("Se requiere ejecutar en GPU")
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
class EndpointHandler():
def __init__(self, model_dir):
print("Loading FaceAnalysis", model_dir)
self.app = FaceAnalysis(
name="antelopev2",
root=f"./antelopev2",
providers=["CPUExecutionProvider"],
)
# self.app = FaceAnalysis(
# name="buffalo_l",
# root="./",
# providers=["CPUExecutionProvider"],
# )
self.app.prepare(ctx_id=0, det_size=(640, 640))
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
face_adapter = f"/repository/checkpoints/ip-adapter.bin"
controlnet_path = f"/repository/checkpoints/ControlNetModel"
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
controlnet_depth = ControlNetModel.from_pretrained(
controlnet_depth_model, torch_dtype=dtype
).to(device)
def get_depth_map(image):
image = np.array(image) / 255.0
h, w = image.shape[:2]
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0).to("cuda")
with torch.no_grad():
depth = depth_anything(image)
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_image = Image.fromarray(depth)
return depth_image
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny,
"depth": controlnet_depth,
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image,
"depth": get_depth_map,
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# if we need more parameters
scheduler_class_name = "EulerDiscreteScheduler"
add_kwargs = {}
scheduler = getattr(diffusers, scheduler_class_name)
self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)
identitynet_strength_ratio = 0.8
pose_strength = 0.5
canny_strength = 0.3
depth_strength = 0.5
self.my_controlnet_selection = ["pose", "canny"]
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength,
"depth": depth_strength,
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in self.my_controlnet_selection]
)
self.control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in self.my_controlnet_selection
]
def __call__(self, data):
def apply_style(style_name: str, positive: str) -> str:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
default_negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy"
# hyperparamters
face_image_path = data.pop("face_image_path", "https://i.ibb.co/GQzm527/examples-musk-resize.jpg")
pose_image_path = data.pop("pose_image_path", "https://i.ibb.co/TRCK4MS/examples-poses-pose2.jpg")
prompt_input = data.pop("inputs", "a man flying in the sky in Mars")
num_inference_steps = data.pop("num_inference_steps", 20)
guidance_scale = data.pop("guidance_scale", 5.0)
negative_prompt = data.pop("negative_prompt", default_negative_prompt)
style_name = data.pop("style_name", DEFAULT_STYLE_NAME)
prompt = apply_style(style_name, prompt_input)
adapter_strength_ratio = 0.8
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
if size is not None:
w_resize_new, h_resize_new = size
else:
w, h = input_image.size
# Calcular el redimensionamiento con un solo paso
ratio_min = min_side / min(w, h)
w_min, h_min = round(ratio_min * w), round(ratio_min * h)
ratio_max = max_side / max(w_min, h_min)
# Aplicar la menor de las dos ratios para asegurar que cumple ambas condiciones
final_ratio = min(ratio_min, ratio_max)
w_final, h_final = round(final_ratio * w), round(final_ratio * h)
# Ajustar al número base de píxeles más cercano
w_resize_new = (w_final // base_pixel_number) * base_pixel_number
h_resize_new = (h_final // base_pixel_number) * base_pixel_number
# Redimensionar una sola vez
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
# Optimizar la creación del fondo
res = Image.new("RGB", (max_side, max_side), (255, 255, 255))
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res.paste(input_image, (offset_x, offset_y))
return res
return input_image
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
# if len(face_info) == 0:
# raise gr.Error(
# f"Unable to detect a face in the image. Please upload a different photo with a clear face."
# )
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
]
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
# get error if no face is detected
# if len(face_info) == 0:
# raise gr.Error(
# f"Cannot find any face in the reference image! Please upload another person image"
# )
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in self.my_controlnet_selection
]
print("Start inference...")
self.generator = torch.Generator(device=device).manual_seed(42)
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=self.control_scales,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=self.generator,
).images
return images[0]