|
import cv2 |
|
import numpy as np |
|
|
|
import diffusers |
|
from diffusers.models import ControlNetModel |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.utils import load_image |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
from style_template import styles |
|
|
|
from PIL import Image |
|
|
|
from depth_anything.dpt import DepthAnything |
|
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet |
|
|
|
from insightface.app import FaceAnalysis |
|
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps |
|
from controlnet_aux import OpenposeDetector |
|
|
|
|
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "Mars" |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("Se requiere ejecutar en GPU") |
|
|
|
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, model_dir): |
|
|
|
print("Loading FaceAnalysis", model_dir) |
|
|
|
self.app = FaceAnalysis( |
|
name="antelopev2", |
|
root=f"./antelopev2", |
|
providers=["CPUExecutionProvider"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") |
|
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval() |
|
|
|
transform = Compose([ |
|
Resize( |
|
width=518, |
|
height=518, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
face_adapter = f"/repository/checkpoints/ip-adapter.bin" |
|
controlnet_path = f"/repository/checkpoints/ControlNetModel" |
|
|
|
self.controlnet_identitynet = ControlNetModel.from_pretrained( |
|
controlnet_path, torch_dtype=dtype |
|
) |
|
|
|
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0" |
|
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" |
|
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small" |
|
|
|
controlnet_pose = ControlNetModel.from_pretrained( |
|
controlnet_pose_model, torch_dtype=dtype |
|
).to(device) |
|
controlnet_canny = ControlNetModel.from_pretrained( |
|
controlnet_canny_model, torch_dtype=dtype |
|
).to(device) |
|
controlnet_depth = ControlNetModel.from_pretrained( |
|
controlnet_depth_model, torch_dtype=dtype |
|
).to(device) |
|
|
|
def get_depth_map(image): |
|
|
|
image = np.array(image) / 255.0 |
|
|
|
h, w = image.shape[:2] |
|
|
|
image = transform({'image': image})['image'] |
|
image = torch.from_numpy(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
depth = depth_anything(image) |
|
|
|
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] |
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
|
|
depth = depth.cpu().numpy().astype(np.uint8) |
|
|
|
depth_image = Image.fromarray(depth) |
|
|
|
return depth_image |
|
|
|
def get_canny_image(image, t1=100, t2=200): |
|
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
edges = cv2.Canny(image, t1, t2) |
|
return Image.fromarray(edges, "L") |
|
|
|
self.controlnet_map = { |
|
"pose": controlnet_pose, |
|
"canny": controlnet_canny, |
|
"depth": controlnet_depth, |
|
} |
|
|
|
self.controlnet_map_fn = { |
|
"pose": openpose, |
|
"canny": get_canny_image, |
|
"depth": get_depth_map, |
|
} |
|
|
|
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8" |
|
|
|
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
pretrained_model_name_or_path, |
|
controlnet=[self.controlnet_identitynet], |
|
torch_dtype=dtype, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
).to(device) |
|
|
|
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( |
|
self.pipe.scheduler.config |
|
) |
|
|
|
|
|
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") |
|
self.pipe.disable_lora() |
|
|
|
self.pipe.cuda() |
|
self.pipe.load_ip_adapter_instantid(face_adapter) |
|
self.pipe.image_proj_model.to("cuda") |
|
self.pipe.unet.to("cuda") |
|
|
|
|
|
scheduler_class_name = "EulerDiscreteScheduler" |
|
add_kwargs = {} |
|
scheduler = getattr(diffusers, scheduler_class_name) |
|
self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs) |
|
|
|
identitynet_strength_ratio = 0.8 |
|
|
|
pose_strength = 0.5 |
|
canny_strength = 0.3 |
|
depth_strength = 0.5 |
|
|
|
self.my_controlnet_selection = ["pose", "canny"] |
|
|
|
controlnet_scales = { |
|
"pose": pose_strength, |
|
"canny": canny_strength, |
|
"depth": depth_strength, |
|
} |
|
|
|
self.pipe.controlnet = MultiControlNetModel( |
|
[self.controlnet_identitynet] |
|
+ [self.controlnet_map[s] for s in self.my_controlnet_selection] |
|
) |
|
self.control_scales = [float(identitynet_strength_ratio)] + [ |
|
controlnet_scales[s] for s in self.my_controlnet_selection |
|
] |
|
|
|
def __call__(self, data): |
|
|
|
|
|
def apply_style(style_name: str, positive: str) -> str: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive) |
|
|
|
default_negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy" |
|
|
|
|
|
face_image_path = data.pop("face_image_path", "https://i.ibb.co/GQzm527/examples-musk-resize.jpg") |
|
pose_image_path = data.pop("pose_image_path", "https://i.ibb.co/TRCK4MS/examples-poses-pose2.jpg") |
|
prompt_input = data.pop("inputs", "a man flying in the sky in Mars") |
|
num_inference_steps = data.pop("num_inference_steps", 20) |
|
guidance_scale = data.pop("guidance_scale", 5.0) |
|
negative_prompt = data.pop("negative_prompt", default_negative_prompt) |
|
style_name = data.pop("style_name", DEFAULT_STYLE_NAME) |
|
|
|
prompt = apply_style(style_name, prompt_input) |
|
|
|
adapter_strength_ratio = 0.8 |
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
def resize_img( |
|
input_image, |
|
max_side=1280, |
|
min_side=1024, |
|
size=None, |
|
pad_to_max_side=False, |
|
mode=Image.BILINEAR, |
|
base_pixel_number=64, |
|
): |
|
if size is not None: |
|
w_resize_new, h_resize_new = size |
|
else: |
|
w, h = input_image.size |
|
|
|
ratio_min = min_side / min(w, h) |
|
w_min, h_min = round(ratio_min * w), round(ratio_min * h) |
|
ratio_max = max_side / max(w_min, h_min) |
|
|
|
final_ratio = min(ratio_min, ratio_max) |
|
w_final, h_final = round(final_ratio * w), round(final_ratio * h) |
|
|
|
|
|
w_resize_new = (w_final // base_pixel_number) * base_pixel_number |
|
h_resize_new = (h_final // base_pixel_number) * base_pixel_number |
|
|
|
|
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
if pad_to_max_side: |
|
|
|
res = Image.new("RGB", (max_side, max_side), (255, 255, 255)) |
|
offset_x = (max_side - w_resize_new) // 2 |
|
offset_y = (max_side - h_resize_new) // 2 |
|
res.paste(input_image, (offset_x, offset_y)) |
|
return res |
|
|
|
return input_image |
|
|
|
face_image = load_image(face_image_path) |
|
face_image = resize_img(face_image, max_side=1024) |
|
face_image_cv2 = convert_from_image_to_cv2(face_image) |
|
height, width, _ = face_image_cv2.shape |
|
|
|
|
|
face_info = self.app.get(face_image_cv2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
face_info = sorted( |
|
face_info, |
|
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], |
|
)[ |
|
-1 |
|
] |
|
|
|
face_emb = face_info["embedding"] |
|
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) |
|
img_controlnet = face_image |
|
|
|
pose_image = load_image(pose_image_path) |
|
pose_image = resize_img(pose_image, max_side=1024) |
|
img_controlnet = pose_image |
|
pose_image_cv2 = convert_from_image_to_cv2(pose_image) |
|
|
|
face_info = self.app.get(pose_image_cv2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
face_info = face_info[-1] |
|
face_kps = draw_kps(pose_image, face_info["kps"]) |
|
|
|
width, height = face_kps.size |
|
|
|
control_mask = np.zeros([height, width, 3]) |
|
x1, y1, x2, y2 = face_info["bbox"] |
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) |
|
control_mask[y1:y2, x1:x2] = 255 |
|
control_mask = Image.fromarray(control_mask.astype(np.uint8)) |
|
|
|
control_images = [face_kps] + [ |
|
self.controlnet_map_fn[s](img_controlnet).resize((width, height)) |
|
for s in self.my_controlnet_selection |
|
] |
|
|
|
print("Start inference...") |
|
|
|
self.generator = torch.Generator(device=device).manual_seed(42) |
|
|
|
self.pipe.set_ip_adapter_scale(adapter_strength_ratio) |
|
images = self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image_embeds=face_emb, |
|
image=control_images, |
|
control_mask=control_mask, |
|
controlnet_conditioning_scale=self.control_scales, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
generator=self.generator, |
|
).images |
|
|
|
return images[0] |