#!/bin/sh #SBATCH --job-name=oracle #SBATCH --output=oracle-%A.out # Standard output of the script (Can be absolute or relative path). %A adds the job id to the file name so you can launch the same script multiple times and get different logging files #SBATCH --error=oracle-%A.err # Standard error of the script #SBATCH --time=0-160:00:00 # Limit on the total run time (format: days-hours:minutes:seconds) #SBATCH --gres=gpu:1 # Number of GPUs if needed #SBATCH --cpus-per-task=4 # Number of CPUs (Don't use more than 24 per GPU) #SBATCH --mem=96G # Memory in GB (Don't use more than 126G per GPU), maybe 128? # activate corresponding environment # conda deactivate # If you launch your script from a terminal where your environment is already loaded, conda won't activate the environment. This guards against that. Not necessary if you always run this script from a clean terminal source ~/miniconda3/etc/profile.d/conda.sh conda activate oracle # FLASH ATTN NEEDS TO BE INSTALLED FROM THE SOURCE FOR CUDA 11.7 by previously setting CUDA HOME and LD_LIBRARY SOMETHING VARIABLES. # POTENTIALLY TRY OUT VERSION 2 AS WELL WHICH IS LLAMA 2 BASED export GPUS_PER_NODE=1 #export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # TODO needed for multi-node setups #export MASTER_PORT=9901 export MASTER_ADDR=$(hostname) export MASTER_PORT=29508 srun --jobid $SLURM_JOBID python -m torch.distributed.run --nproc_per_node=$GPUS_PER_NODE --master_addr=$MASTER_ADDR --master_port=$MASTER_PORT llava/train/train_mem.py \ --deepspeed ./scripts/zero2.json \ --model_name_or_path liuhaotian/llava-v1.5-7b \ --version v1 \ --data_path /home/guests/ege_oezsoy/Oracle/data/llava_samples/train.json \ --image_folder / \ --vision_tower openai/clip-vit-large-patch14-336 \ --mm_projector_type mlp2x_gelu \ --tune_mm_mlp_adapter True \ --mm_vision_select_layer -2 \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --image_aspect_ratio pad \ --group_by_modality_length True \ --bf16 True \ --output_dir ./checkpoints/llava-v1.5-7b-task-4dor_pretrain_linear_weighting \ --num_train_epochs 50 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "epoch" \ --save_steps 10 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --max_grad_norm 0.1 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to wandb \ --run_name llava-v1.5-7b-task-4dor_pretrain_linear_weighting