from PIL import Image from io import BytesIO import base64 import numpy as np import torch from transformers import StoppingCriteria from LLAVA_Biovil.llava.constants import IMAGE_TOKEN_INDEX def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def remap_to_uint8(array: np.ndarray, percentiles=None) -> np.ndarray: """Remap values in input so the output range is :math:`[0, 255]`. Percentiles can be used to specify the range of values to remap. This is useful to discard outliers in the input data. :param array: Input array. :param percentiles: Percentiles of the input values that will be mapped to ``0`` and ``255``. Passing ``None`` is equivalent to using percentiles ``(0, 100)`` (but faster). :returns: Array with ``0`` and ``255`` as minimum and maximum values. """ array = array.astype(float) if percentiles is not None: len_percentiles = len(percentiles) if len_percentiles != 2: message = ( 'The value for percentiles should be a sequence of length 2,' f' but has length {len_percentiles}' ) raise ValueError(message) a, b = percentiles if a >= b: raise ValueError(f'Percentiles must be in ascending order, but a sequence "{percentiles}" was passed') if a < 0 or b > 100: raise ValueError(f'Percentiles must be in the range [0, 100], but a sequence "{percentiles}" was passed') cutoff: np.ndarray = np.percentile(array, percentiles) array = np.clip(array, *cutoff) array -= array.min() array /= array.max() array *= 255 return array.astype(np.uint8) def load_image_from_base64_biovil(image): image = Image.open(BytesIO(base64.b64decode(image))) image = remap_to_uint8(np.array(image)) return Image.fromarray(image).convert("L") def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == 'pad': for image in images: image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def process_image_biovil(images, image_processor): new_images = [] for image in images: image = image_processor(image) new_images.append(image) if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs)