RaDialog-interactive-radiology-report-generation / LLAVA_Biovil /slurm_config_biovil_unfrozen_v5.conf
ga89tiy
Initial model commit
db6ee6a
raw
history blame
3.06 kB
#!/bin/sh
#SBATCH --job-name=ins_v5_unfrozen
#SBATCH --output=oracle-%A.out # Standard output of the script (Can be absolute or relative path). %A adds the job id to the file name so you can launch the same script multiple times and get different logging files
#SBATCH --error=oracle-%A.err # Standard error of the script
#SBATCH --time=0-160:00:00 # Limit on the total run time (format: days-hours:minutes:seconds)
#SBATCH --gres=gpu:1 # Number of GPUs if needed
#SBATCH --cpus-per-task=8 # Number of CPUs (Don't use more than 24 per GPU)
#SBATCH --mem=96G # Memory in GB (Don't use more than 126G per GPU), maybe 128?
# activate corresponding environment
# conda deactivate # If you launch your script from a terminal where your environment is already loaded, conda won't activate the environment. This guards against that. Not necessary if you always run this script from a clean terminal
source ~/miniconda3/etc/profile.d/conda.sh
conda activate llava_raddialog
# FLASH ATTN NEEDS TO BE INSTALLED FROM THE SOURCE FOR CUDA 11.7 by previously setting CUDA HOME and LD_LIBRARY SOMETHING VARIABLES.
# POTENTIALLY TRY OUT VERSION 2 AS WELL WHICH IS LLAMA 2 BASED
export PYTHONPATH="/home/guests/chantal_pellegrini/RaDialog_LLaVA:$PYTHONPATH"
export GPUS_PER_NODE=1
#export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # TODO needed for multi-node setups
#export MASTER_PORT=9901
export MASTER_ADDR=$(hostname)
export MASTER_PORT=29712
srun --jobid $SLURM_JOBID python -m torch.distributed.run --nproc_per_node=$GPUS_PER_NODE --master_addr=$MASTER_ADDR --master_port=$MASTER_PORT llava/train/train_mem.py \
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
--deepspeed ./scripts/zero2.json \
--model_name_or_path liuhaotian/llava-v1.5-7b \
--version v1 \
--data_path /home/guests/chantal_pellegrini/RaDialog_LLaVA/data/mimic_cxr_instruct_llava_v5.json \
--image_folder /home/data/DIVA/mimic/mimic-cxr-jpg/2.0.0 \
--vision_tower biovil \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir ./checkpoints/llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5 \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 64 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1500 \
--learning_rate 2e-5 \
--max_grad_norm 0.1 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 1300 \
--gradient_checkpointing False \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb \
--run_name llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5 \
--unfreeze_n_vision_tower_layers 12