RaDialog-interactive-radiology-report-generation
/
LLAVA_Biovil
/slurm_config_biovil_unfrozen_v5.conf
#!/bin/sh | |
#SBATCH --job-name=ins_v5_unfrozen | |
#SBATCH --output=oracle-%A.out # Standard output of the script (Can be absolute or relative path). %A adds the job id to the file name so you can launch the same script multiple times and get different logging files | |
#SBATCH --error=oracle-%A.err # Standard error of the script | |
#SBATCH --time=0-160:00:00 # Limit on the total run time (format: days-hours:minutes:seconds) | |
#SBATCH --gres=gpu:1 # Number of GPUs if needed | |
#SBATCH --cpus-per-task=8 # Number of CPUs (Don't use more than 24 per GPU) | |
#SBATCH --mem=96G # Memory in GB (Don't use more than 126G per GPU), maybe 128? | |
# activate corresponding environment | |
# conda deactivate # If you launch your script from a terminal where your environment is already loaded, conda won't activate the environment. This guards against that. Not necessary if you always run this script from a clean terminal | |
source ~/miniconda3/etc/profile.d/conda.sh | |
conda activate llava_raddialog | |
# FLASH ATTN NEEDS TO BE INSTALLED FROM THE SOURCE FOR CUDA 11.7 by previously setting CUDA HOME and LD_LIBRARY SOMETHING VARIABLES. | |
# POTENTIALLY TRY OUT VERSION 2 AS WELL WHICH IS LLAMA 2 BASED | |
export PYTHONPATH="/home/guests/chantal_pellegrini/RaDialog_LLaVA:$PYTHONPATH" | |
export GPUS_PER_NODE=1 | |
#export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # TODO needed for multi-node setups | |
#export MASTER_PORT=9901 | |
export MASTER_ADDR=$(hostname) | |
export MASTER_PORT=29712 | |
srun --jobid $SLURM_JOBID python -m torch.distributed.run --nproc_per_node=$GPUS_PER_NODE --master_addr=$MASTER_ADDR --master_port=$MASTER_PORT llava/train/train_mem.py \ | |
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ | |
--deepspeed ./scripts/zero2.json \ | |
--model_name_or_path liuhaotian/llava-v1.5-7b \ | |
--version v1 \ | |
--data_path /home/guests/chantal_pellegrini/RaDialog_LLaVA/data/mimic_cxr_instruct_llava_v5.json \ | |
--image_folder /home/data/DIVA/mimic/mimic-cxr-jpg/2.0.0 \ | |
--vision_tower biovil \ | |
--mm_projector_type mlp2x_gelu \ | |
--mm_vision_select_layer -2 \ | |
--mm_use_im_start_end False \ | |
--mm_use_im_patch_token False \ | |
--image_aspect_ratio pad \ | |
--group_by_modality_length True \ | |
--bf16 True \ | |
--output_dir ./checkpoints/llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5 \ | |
--num_train_epochs 5 \ | |
--per_device_train_batch_size 2 \ | |
--per_device_eval_batch_size 4 \ | |
--gradient_accumulation_steps 64 \ | |
--evaluation_strategy "no" \ | |
--save_strategy "steps" \ | |
--save_steps 1500 \ | |
--learning_rate 2e-5 \ | |
--max_grad_norm 0.1 \ | |
--weight_decay 0. \ | |
--warmup_ratio 0.03 \ | |
--lr_scheduler_type "cosine" \ | |
--logging_steps 1 \ | |
--tf32 True \ | |
--model_max_length 1300 \ | |
--gradient_checkpointing False \ | |
--dataloader_num_workers 4 \ | |
--lazy_preprocess True \ | |
--report_to wandb \ | |
--run_name llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5 \ | |
--unfreeze_n_vision_tower_layers 12 | |