ga89tiy
Initial model commit
db6ee6a
raw
history blame
38.1 kB
import json
import math
import os
import shutil
import sys
import time
from distutils import dist
import torch
from torch import nn
import numpy as np
from torch.utils.data import Sampler
from packaging import version
from transformers import Trainer, TrainerState, is_torch_tpu_available, is_apex_available
from transformers.debug_utils import DebugOption
from transformers.integrations import hp_params
from transformers.deepspeed import deepspeed_init, deepspeed_load_checkpoint
from transformers.trainer import (
is_sagemaker_mp_enabled,
get_parameter_names,
has_length,
ALL_LAYERNORM_LAYERS,
ShardedDDPOption,
logger, TRAINER_STATE_NAME,
)
from typing import List, Optional
from transformers.trainer_pt_utils import get_model_param_count
from transformers.trainer_utils import HPSearchBackend, speed_metrics, TrainOutput
from transformers.training_args import ParallelMode
from transformers.utils import is_accelerate_available
if is_accelerate_available():
from accelerate import Accelerator, skip_first_batches
from accelerate import __version__ as accelerate_version
from accelerate.utils import DistributedDataParallelKwargs, GradientAccumulationPlugin
if version.parse(accelerate_version) > version.parse("0.20.3"):
from accelerate.utils import (
load_fsdp_model,
load_fsdp_optimizer,
save_fsdp_model,
save_fsdp_optimizer,
)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
if is_apex_available():
from apex import amp
# with open('/home/guests/chantal_pellegrini/RaDialog_LLaVA/data/train_token_freqs_radrestruct_balanced_50ep.json') as f:
# token_frequencies = json.load(f)
# token_weights = {k: 1 / v for k, v in token_frequencies.items()} # linear weighting
# print("lin weighting")
# token_weights = {k: 1 / (np.log(v) + 1) for k, v in token_frequencies.items()} # log weighting, seems to work better in this case
# print("log weighting")
token_weights = None # no weighting
print("no weighting")
if token_weights is not None:
min_weight = min(token_weights.values())
extra_token_weight = min_weight / 100 # 100 smaller than the smallest weight
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
print(name, 'no ignore status')
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
return to_return
def split_to_even_chunks(indices, lengths, num_chunks):
"""
Split a list of indices into `chunks` chunks of roughly equal lengths.
"""
if len(indices) % num_chunks != 0:
return [indices[i::num_chunks] for i in range(num_chunks)]
num_indices_per_chunk = len(indices) // num_chunks
chunks = [[] for _ in range(num_chunks)]
chunks_lengths = [0 for _ in range(num_chunks)]
for index in indices:
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
chunks[shortest_chunk].append(index)
chunks_lengths[shortest_chunk] += lengths[index]
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
chunks_lengths[shortest_chunk] = float("inf")
return chunks
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
assert all(l != 0 for l in lengths), "Should not have zero length."
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
# all samples are in the same modality
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
megabatch_size = world_size * batch_size
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
last_mm = mm_megabatches[-1]
last_lang = lang_megabatches[-1]
additional_batch = last_mm + last_lang
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in megabatch_indices]
if len(additional_batch) > 0:
megabatches.append(sorted(additional_batch))
return [i for megabatch in megabatches for i in megabatch]
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = world_size * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
world_size: int,
lengths: Optional[List[int]] = None,
generator=None,
group_by_modality: bool = False,
):
if lengths is None:
raise ValueError("Lengths must be provided.")
self.batch_size = batch_size
self.world_size = world_size
self.lengths = lengths
self.generator = generator
self.group_by_modality = group_by_modality
def __len__(self):
return len(self.lengths)
def __iter__(self):
if self.group_by_modality:
indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
else:
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
return iter(indices)
class LLaVATrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
outputs = model(**inputs)
# Save past state if it exists
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if token_weights is not None:
# check if self has attribute vocab_weight, otherwise create
if not hasattr(self, 'vocab_weight'):
vocab = self.tokenizer.get_vocab()
self.vocab_weight = torch.ones(len(vocab)) * extra_token_weight # default weight
# map them using vocab to correct indices
for k, v in token_weights.items():
self.vocab_weight[vocab[k]] = v
self.vocab_weight = self.vocab_weight.to(self.args.device)
# Shift so that tokens < n predict n
shift_logits = outputs.logits[..., :-1, :].contiguous()
shift_labels = outputs.modified_labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(weight=self.vocab_weight)
shift_logits = shift_logits.view(-1, self.model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return (loss, outputs) if return_outputs else loss
else: #orginial compute_loss without weighting
# We don't use .loss here since the model may return tuples instead of ModelOutput.
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
def _inner_training_loop(
self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None
):
self.accelerator.free_memory()
self._train_batch_size = batch_size
logger.debug(f"Currently training with a batch size of: {self._train_batch_size}")
# Data loader and number of training steps
train_dataloader = self.get_train_dataloader()
# Setting up training control variables:
# number of training epochs: num_train_epochs
# number of training steps per epoch: num_update_steps_per_epoch
# total number of training steps to execute: max_steps
total_train_batch_size = self._train_batch_size * args.gradient_accumulation_steps * args.world_size
len_dataloader = None
if has_length(train_dataloader):
len_dataloader = len(train_dataloader)
num_update_steps_per_epoch = len_dataloader // args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
num_examples = self.num_examples(train_dataloader)
if args.max_steps > 0:
max_steps = args.max_steps
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
args.max_steps % num_update_steps_per_epoch > 0
)
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
# the best we can do.
num_train_samples = args.max_steps * total_train_batch_size
else:
max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
num_train_epochs = math.ceil(args.num_train_epochs)
num_train_samples = self.num_examples(train_dataloader) * args.num_train_epochs
elif args.max_steps > 0: # Rely on max_steps when dataloader does not have a working size
max_steps = args.max_steps
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_train_epochs = sys.maxsize
num_update_steps_per_epoch = max_steps
num_examples = total_train_batch_size * args.max_steps
num_train_samples = args.max_steps * total_train_batch_size
else:
raise ValueError(
"args.max_steps must be set to a positive value if dataloader does not have a length, was"
f" {args.max_steps}"
)
# Compute absolute values for logging, eval, and save if given as ratio
if args.logging_steps and args.logging_steps < 1:
args.logging_steps = math.ceil(max_steps * args.logging_steps)
if args.eval_steps and args.eval_steps < 1:
args.eval_steps = math.ceil(max_steps * args.eval_steps)
if args.save_steps and args.save_steps < 1:
args.save_steps = math.ceil(max_steps * args.save_steps)
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
if self.args.n_gpu > 1:
# nn.DataParallel(model) replicates the model, creating new variables and module
# references registered here no longer work on other gpus, breaking the module
raise ValueError(
"Currently --debug underflow_overflow is not supported under DP. Please use DDP"
" (torch.distributed.launch)."
)
else:
debug_overflow = DebugUnderflowOverflow(self.model) # noqa
delay_optimizer_creation = (
self.sharded_ddp is not None
and self.sharded_ddp != ShardedDDPOption.SIMPLE
or is_sagemaker_mp_enabled()
or self.fsdp is not None
)
# We need to reset the scheduler, as its parameters may be different on subsequent calls
if self._created_lr_scheduler:
self.lr_scheduler = None
self._created_lr_scheduler = False
if self.is_deepspeed_enabled:
self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps)
if not delay_optimizer_creation:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
self.state = TrainerState()
self.state.is_hyper_param_search = trial is not None
# Activate gradient checkpointing if needed
if args.gradient_checkpointing:
self.model.gradient_checkpointing_enable()
model = self._wrap_model(self.model_wrapped)
if is_sagemaker_mp_enabled() and resume_from_checkpoint is not None:
self._load_from_checkpoint(resume_from_checkpoint, model)
# as the model is wrapped, don't use `accelerator.prepare`
# this is for unhandled cases such as
# Fairscale Sharded DDP, FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
use_accelerator_prepare = True if model is self.model else False
if delay_optimizer_creation:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
# prepare using `accelerator` prepare
if use_accelerator_prepare:
self.model.train()
if hasattr(self.lr_scheduler, "step"):
if self.use_apex:
model = self.accelerator.prepare(self.model)
else:
model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
else:
# to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config.
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.lr_scheduler
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# deepspeed ckpt loading
if resume_from_checkpoint is not None and self.is_deepspeed_enabled:
print(f"DeepSpeed info: Loading model from {resume_from_checkpoint}")
deepspeed_load_checkpoint(self.model_wrapped, resume_from_checkpoint)
# get step from opt state
# Assuming `optimizer_state_dict` is the dictionary you've loaded from the checkpoint
for param_tensor, state in self.lr_scheduler.optimizer.state.items():
step_tensor = state['step']
step_value = step_tensor.item() # Convert tensor to a Python number
print(f"Step value for a parameter tensor: {step_value}")
# Since all parameters should have been updated the same number of times,
# you can break after the first iteration
break
# step scheduler to match
for _ in range(int(step_value)):
self.lr_scheduler.step()
# Check if saved optimizer or scheduler states exist
self._load_optimizer_and_scheduler(resume_from_checkpoint)
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
# Train!
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples:,}")
logger.info(f" Num Epochs = {num_train_epochs:,}")
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}")
if self.args.per_device_train_batch_size != self._train_batch_size:
logger.info(f" Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps:,}")
logger.info(f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}")
self.state.epoch = 0
start_time = time.time()
epochs_trained = 0
steps_trained_in_current_epoch = 0
steps_trained_progress_bar = None
# Check if continuing training from a checkpoint
if resume_from_checkpoint is not None and os.path.isfile(
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
):
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
epochs_trained = self.state.global_step // num_update_steps_per_epoch
if not args.ignore_data_skip:
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
steps_trained_in_current_epoch *= args.gradient_accumulation_steps
else:
steps_trained_in_current_epoch = 0
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {self.state.global_step}")
if not args.ignore_data_skip:
logger.info(
f" Will skip the first {epochs_trained} epochs then the first"
f" {steps_trained_in_current_epoch} batches in the first epoch."
)
# Update the references
self.callback_handler.model = self.model
self.callback_handler.optimizer = self.optimizer
self.callback_handler.lr_scheduler = self.lr_scheduler
self.callback_handler.train_dataloader = train_dataloader
if self.hp_name is not None and self._trial is not None:
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
# parameter to Train when using DDP.
self.state.trial_name = self.hp_name(self._trial)
if trial is not None:
assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
self.state.trial_params = hp_params(assignments)
else:
self.state.trial_params = None
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
# to set this after the load.
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
tr_loss = torch.tensor(0.0).to(args.device)
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
self._total_loss_scalar = 0.0
self._globalstep_last_logged = self.state.global_step
model.zero_grad()
self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
if not args.ignore_data_skip:
for epoch in range(epochs_trained):
for _ in train_dataloader:
break
total_batched_samples = 0
for epoch in range(epochs_trained, num_train_epochs):
epoch_iterator = train_dataloader
# Reset the past mems state at the beginning of each epoch if necessary.
if args.past_index >= 0:
self._past = None
steps_in_epoch = (
len(epoch_iterator)
if len_dataloader is not None
else args.max_steps * args.gradient_accumulation_steps
)
self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0:
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
steps_skipped = 0
if steps_trained_in_current_epoch > 0:
epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch)
steps_skipped = steps_trained_in_current_epoch
steps_trained_in_current_epoch = 0
rng_to_sync = True
step = -1
for step, inputs in enumerate(epoch_iterator):
total_batched_samples += 1
if rng_to_sync:
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
if steps_trained_progress_bar is not None:
steps_trained_progress_bar.update(1)
if steps_trained_in_current_epoch == 0:
self._load_rng_state(resume_from_checkpoint)
continue
elif steps_trained_progress_bar is not None:
steps_trained_progress_bar.close()
steps_trained_progress_bar = None
if step % args.gradient_accumulation_steps == 0:
self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
with self.accelerator.accumulate(model):
tr_loss_step = self.training_step(model, inputs)
if (
args.logging_nan_inf_filter
and not is_torch_tpu_available()
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
):
# if loss is nan or inf simply add the average of previous logged losses
tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
else:
tr_loss += tr_loss_step
self.current_flos += float(self.floating_point_ops(inputs))
is_last_step_and_steps_less_than_grad_acc = (
steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch
)
if (
total_batched_samples % args.gradient_accumulation_steps == 0
or
# last step in epoch but step is always smaller than gradient_accumulation_steps
is_last_step_and_steps_less_than_grad_acc
):
# the `or` condition of `is_last_step_and_steps_less_than_grad_acc` is not covered
# in accelerate. So, explicitly enable sync gradients to True in that case.
if is_last_step_and_steps_less_than_grad_acc or (
version.parse(accelerate_version) <= version.parse("0.20.3")
):
self.accelerator.gradient_state._set_sync_gradients(True)
# Gradient clipping
if args.max_grad_norm is not None and args.max_grad_norm > 0:
# deepspeed does its own clipping
if self.do_grad_scaling:
# Reduce gradients first for XLA
if is_torch_tpu_available():
gradients = xm._fetch_gradients(self.optimizer)
xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
# AMP: gradients need unscaling
self.scaler.unscale_(self.optimizer)
if is_sagemaker_mp_enabled() and args.fp16:
self.optimizer.clip_master_grads(args.max_grad_norm)
elif hasattr(self.optimizer, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.optimizer.clip_grad_norm(args.max_grad_norm)
elif hasattr(model, "clip_grad_norm_"):
# Some models (like FullyShardedDDP) have a specific way to do gradient clipping
model.clip_grad_norm_(args.max_grad_norm)
elif self.use_apex:
# Revert to normal clipping otherwise, handling Apex or full precision
nn.utils.clip_grad_norm_(
amp.master_params(self.optimizer),
args.max_grad_norm,
)
else:
self.accelerator.clip_grad_norm_(
model.parameters(),
args.max_grad_norm,
)
# Optimizer step
optimizer_was_run = True
if is_torch_tpu_available():
if self.do_grad_scaling:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
# tpu-comment: accelerate wrapped optimizers call xm.optimizer_step
self.optimizer.step()
elif self.do_grad_scaling:
scale_before = self.scaler.get_scale()
self.scaler.step(self.optimizer)
self.scaler.update()
scale_after = self.scaler.get_scale()
optimizer_was_run = scale_before <= scale_after
else:
self.optimizer.step()
optimizer_was_run = not self.accelerator.optimizer_step_was_skipped
if optimizer_was_run:
# Delay optimizer scheduling until metrics are generated
if not isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step()
model.zero_grad()
self.state.global_step += 1
self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
self.control = self.callback_handler.on_step_end(args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
else:
self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
if step < 0:
logger.warning(
"There seems to be not a single sample in your epoch_iterator, stopping training at step"
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
f" num_steps ({max_steps}) higher than the number of available samples."
)
self.control.should_training_stop = True
self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
if is_torch_tpu_available():
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
else:
logger.warning(
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
"configured. Check your training configuration if this is unexpected."
)
if self.control.should_training_stop:
break
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
# Wait for everyone to get here so we are sur the model has been saved by process 0.
if is_torch_tpu_available():
xm.rendezvous("load_best_model_at_end")
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
dist.barrier()
# elif is_sagemaker_mp_enabled():
# smp.barrier()
self._load_best_model()
# add remaining tr_loss
self._total_loss_scalar += tr_loss.item()
train_loss = self._total_loss_scalar / self.state.global_step
metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
self.store_flos()
metrics["total_flos"] = self.state.total_flos
metrics["train_loss"] = train_loss
self.is_in_train = False
self._memory_tracker.stop_and_update_metrics(metrics)
self.log(metrics)
run_dir = self._get_output_dir(trial)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir)
# Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1:
for checkpoint in checkpoints_sorted:
if checkpoint != self.state.best_model_checkpoint:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint)
self.control = self.callback_handler.on_train_end(args, self.state, self.control)
return TrainOutput(self.state.global_step, train_loss, metrics)
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
if self.args.group_by_modality_length:
lengths = self.train_dataset.modality_lengths
return LengthGroupedSampler(
self.args.train_batch_size,
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
lengths=lengths,
group_by_modality=True,
)
else:
return super()._get_train_sampler()
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
if is_sagemaker_mp_enabled():
return super().create_optimizer()
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
return super().create_optimizer()
opt_model = self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
if self.args.mm_projector_lr is not None:
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
"lr": self.args.mm_projector_lr,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.mm_projector_lr,
},
]
else:
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer = OSS(
params=optimizer_grouped_parameters,
optim=optimizer_cls,
**optimizer_kwargs,
)
else:
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return self.optimizer
def _save_checkpoint(self, model, trial, metrics=None):
if getattr(self.args, 'tune_mm_mlp_adapter', False):
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
# Only save Adapter
keys_to_match = ['mm_projector', 'vision_resampler']
if getattr(self.args, "use_im_start_end", False):
keys_to_match.extend(['embed_tokens', 'embed_in'])
weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match)
if self.args.local_rank == 0 or self.args.local_rank == -1:
self.model.config.save_pretrained(output_dir)
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
else:
super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
if getattr(self.args, 'tune_mm_mlp_adapter', False):
pass
else:
super(LLaVATrainer, self)._save(output_dir, state_dict)