ga89tiy
Initial model commit
db6ee6a
raw
history blame
6.25 kB
from typing import List, Optional, Tuple
import torch
from torch import nn
import warnings
import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
from peft.tuners.lora import LoraLayer
try:
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
except Exception:
raise ModuleNotFoundError(
"Please install FlashAttention first, e.g., with pip install flash-attn --no-build-isolation, Learn more at https://github.com/Dao-AILab/flash-attention#installation-and-features"
)
try:
from einops import rearrange
except Exception:
raise ModuleNotFoundError("Please install einops first, e.g., with pip install einops")
# ADAPTED from https://github.com/allenai/open-instruct/blob/main/open_instruct/llama_flash_attn_monkey_patch.py
# AND https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
# AND https://github.com/LAION-AI/Open-Assistant/blob/04fa9a24b2a58c8885b8aa6a2eb02b18de6b4961/model/model_training/models/patching_llama.py
# AND Sourabh https://github.com/huggingface/transformers/commit/ee81bf5aee0d65f005d157c013777e3d27d8d6bf
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
if output_attentions:
warnings.warn("Output attentions is not supported for patched `LlamaAttention`, returning `None` instead.")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# Past Key value support
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
if key_padding_mask is None:
qkv = rearrange(qkv, "b s ... -> (b s) ...")
max_s = q_len
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device)
output = flash_attn_varlen_qkvpacked_func(qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True)
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len),
"b s (h d) -> b s h d",
h=nheads,
)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# [bsz, seq_len]
return attention_mask
def replace_attn_with_flash_attn():
cuda_major, cuda_minor = torch.cuda.get_device_capability()
if cuda_major < 8:
print(
"Flash attention is only supported on Ampere or Hopper GPU during training due to head dim > 64 backward."
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
)
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
def unplace_flash_attn_with_attn():
import importlib
import transformers
print("Reloading llama model, unpatching flash attention")
importlib.reload(transformers.models.llama.modeling_llama)
# Adapted from https://github.com/tmm1/axolotl/blob/2eda9e02a9d15a7a3f92b41f257d9844d72fc220/src/axolotl/utils/models.py#L338
def upcast_layer_for_flash_attention(model, torch_dtype):
# LlamaRMSNorm layers are in fp32 after kbit_training, so we need to
# convert them back to fp16/bf16 for flash-attn compatibility.
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
module.to(torch_dtype)
if "norm" in name:
module.to(torch_dtype)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module.to(torch_dtype)
return model