|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
import warnings |
|
import transformers |
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb |
|
from peft.tuners.lora import LoraLayer |
|
|
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func |
|
from flash_attn.bert_padding import unpad_input, pad_input |
|
except Exception: |
|
raise ModuleNotFoundError( |
|
"Please install FlashAttention first, e.g., with pip install flash-attn --no-build-isolation, Learn more at https://github.com/Dao-AILab/flash-attention#installation-and-features" |
|
) |
|
|
|
try: |
|
from einops import rearrange |
|
except Exception: |
|
raise ModuleNotFoundError("Please install einops first, e.g., with pip install einops") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel |
|
|
|
attention_mask: [bsz, q_len] |
|
""" |
|
if output_attentions: |
|
warnings.warn("Output attentions is not supported for patched `LlamaAttention`, returning `None` instead.") |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
|
|
|
|
|
|
qkv = torch.stack([query_states, key_states, value_states], dim=2) |
|
qkv = qkv.transpose(1, 3) |
|
|
|
|
|
key_padding_mask = attention_mask |
|
|
|
if key_padding_mask is None: |
|
qkv = rearrange(qkv, "b s ... -> (b s) ...") |
|
max_s = q_len |
|
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device) |
|
output = flash_attn_varlen_qkvpacked_func(qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True) |
|
output = rearrange(output, "(b s) ... -> b s ...", b=bsz) |
|
else: |
|
nheads = qkv.shape[-2] |
|
x = rearrange(qkv, "b s three h d -> b s (three h d)") |
|
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) |
|
x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads) |
|
output_unpad = flash_attn_varlen_qkvpacked_func( |
|
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True |
|
) |
|
output = rearrange( |
|
pad_input(rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len), |
|
"b s (h d) -> b s h d", |
|
h=nheads, |
|
) |
|
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value |
|
|
|
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
return attention_mask |
|
|
|
|
|
def replace_attn_with_flash_attn(): |
|
cuda_major, cuda_minor = torch.cuda.get_device_capability() |
|
if cuda_major < 8: |
|
print( |
|
"Flash attention is only supported on Ampere or Hopper GPU during training due to head dim > 64 backward." |
|
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" |
|
) |
|
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( |
|
_prepare_decoder_attention_mask |
|
) |
|
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward |
|
|
|
|
|
def unplace_flash_attn_with_attn(): |
|
import importlib |
|
import transformers |
|
|
|
print("Reloading llama model, unpatching flash attention") |
|
importlib.reload(transformers.models.llama.modeling_llama) |
|
|
|
|
|
|
|
def upcast_layer_for_flash_attention(model, torch_dtype): |
|
|
|
|
|
for name, module in model.named_modules(): |
|
if isinstance(module, LoraLayer): |
|
module.to(torch_dtype) |
|
if "norm" in name: |
|
module.to(torch_dtype) |
|
if "lm_head" in name or "embed_tokens" in name: |
|
if hasattr(module, "weight"): |
|
module.to(torch_dtype) |
|
|
|
return model |
|
|