--- library_name: diffusers license: mit tags: - art --- ## Model Details ### Model Description This model combines the capabilities of the stable diffusion medium model with a Civit AI text-to-image model fine-tuned on a custom dataset of high-quality images. It aims to generate realistic and detailed images based on textual prompts. - **Developed by:** [M.Cihan Yalçın](https://www.linkedin.com/in/chanyalcin/) - **Model type:** Stable Diffusion - **License:** MIT - **Finetuned from models:** - [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co./stabilityai/stable-diffusion-3-medium) - [CyberRealistic](https://civitai.com/models/15003/cyberrealistic) ### Model Sources - **Repository:** [Chan-Y/Cyber-Stable-Realistic](https://huggingface.co./Chan-Y/Cyber-Stable-Realistic) - **Demo:** [More Information Needed] ## Uses ### Direct Use ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "Chan-Y/Cyber-Stable-Realistic", torch_dtype=torch.float16).to("cuda") prompt = "A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai" negative = "" image = pipeline(prompt, negative_prompt=negative).images[0] image ``` ## Bias, Risks, and Limitations - The model may not always perfectly capture highly complex or abstract concepts. - The quality of the output can be influenced by the specificity and clarity of the prompt. - Ethical considerations should be taken into account when generating images to avoid misuse. ## Finetuning Details ### Finetuning Data - Model is finetuned with sentetic high quality images collected from high performance Text-to-Image models.