--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-finetuned-FER2013-0.001 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.6847311228754528 --- # resnet-50-finetuned-FER2013-0.001 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co./microsoft/resnet-50) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9002 - Accuracy: 0.6847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4723 | 1.0 | 224 | 1.3382 | 0.4887 | | 1.2236 | 2.0 | 448 | 1.1090 | 0.5751 | | 1.1728 | 3.0 | 672 | 1.0262 | 0.6158 | | 1.1545 | 4.0 | 896 | 0.9717 | 0.6339 | | 1.0776 | 5.0 | 1120 | 0.9885 | 0.6360 | | 1.0183 | 6.0 | 1344 | 0.9475 | 0.6560 | | 0.9856 | 7.0 | 1568 | 0.9114 | 0.6700 | | 0.953 | 8.0 | 1792 | 0.9074 | 0.6767 | | 0.9151 | 9.0 | 2016 | 0.9076 | 0.6833 | | 0.9355 | 10.0 | 2240 | 0.9002 | 0.6847 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1