Celal11 commited on
Commit
de4acda
·
1 Parent(s): 9ed1606

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - image_folder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: resnet-50-finetuned-FER2013-0.001
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: image_folder
17
+ type: image_folder
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.6847311228754528
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # resnet-50-finetuned-FER2013-0.001
29
+
30
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the image_folder dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.9002
33
+ - Accuracy: 0.6847
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.001
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 32
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 4
57
+ - total_train_batch_size: 128
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 10
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.4723 | 1.0 | 224 | 1.3382 | 0.4887 |
68
+ | 1.2236 | 2.0 | 448 | 1.1090 | 0.5751 |
69
+ | 1.1728 | 3.0 | 672 | 1.0262 | 0.6158 |
70
+ | 1.1545 | 4.0 | 896 | 0.9717 | 0.6339 |
71
+ | 1.0776 | 5.0 | 1120 | 0.9885 | 0.6360 |
72
+ | 1.0183 | 6.0 | 1344 | 0.9475 | 0.6560 |
73
+ | 0.9856 | 7.0 | 1568 | 0.9114 | 0.6700 |
74
+ | 0.953 | 8.0 | 1792 | 0.9074 | 0.6767 |
75
+ | 0.9151 | 9.0 | 2016 | 0.9076 | 0.6833 |
76
+ | 0.9355 | 10.0 | 2240 | 0.9002 | 0.6847 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.11.0
83
+ - Datasets 2.1.0
84
+ - Tokenizers 0.12.1