File size: 1,502 Bytes
d206069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d7f81
 
 
d206069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d7f81
 
d206069
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
base_model: facebook/mbart-large-50
tags:
- simplification
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-neutralization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mbart-neutralization

This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co./facebook/mbart-large-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0181
- Bleu: 98.7341
- Gen Len: 18.4896

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log        | 1.0   | 440  | 0.0307          | 91.2911 | 18.25   |
| 0.2343        | 2.0   | 880  | 0.0181          | 98.7341 | 18.4896 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2