Training complete - XLNet-base-LeNER
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlnet/xlnet-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- lener_br
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: XLNet-base_LeNER-Br
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: lener_br
|
21 |
+
type: lener_br
|
22 |
+
config: lener_br
|
23 |
+
split: validation
|
24 |
+
args: lener_br
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8062054933875891
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.872317006053935
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8379592915675389
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9783680282796544
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# XLNet-base_LeNER-Br
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on the lener_br dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: nan
|
48 |
+
- Precision: 0.8062
|
49 |
+
- Recall: 0.8723
|
50 |
+
- F1: 0.8380
|
51 |
+
- Accuracy: 0.9784
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2531 | 1.0 | 979 | nan | 0.6037 | 0.7788 | 0.6801 | 0.9602 |
|
83 |
+
| 0.0531 | 2.0 | 1958 | nan | 0.6865 | 0.8184 | 0.7467 | 0.9657 |
|
84 |
+
| 0.0344 | 3.0 | 2937 | nan | 0.7079 | 0.8321 | 0.7650 | 0.9697 |
|
85 |
+
| 0.0214 | 4.0 | 3916 | nan | 0.7739 | 0.8514 | 0.8108 | 0.9765 |
|
86 |
+
| 0.0176 | 5.0 | 4895 | nan | 0.7407 | 0.8520 | 0.7924 | 0.9712 |
|
87 |
+
| 0.0109 | 6.0 | 5874 | nan | 0.7984 | 0.8696 | 0.8325 | 0.9773 |
|
88 |
+
| 0.0093 | 7.0 | 6853 | nan | 0.7944 | 0.8657 | 0.8285 | 0.9778 |
|
89 |
+
| 0.0056 | 8.0 | 7832 | nan | 0.8130 | 0.8756 | 0.8431 | 0.9779 |
|
90 |
+
| 0.0041 | 9.0 | 8811 | nan | 0.8171 | 0.8751 | 0.8451 | 0.9781 |
|
91 |
+
| 0.0034 | 10.0 | 9790 | nan | 0.8062 | 0.8723 | 0.8380 | 0.9784 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.2
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
+
- Datasets 2.20.0
|
99 |
+
- Tokenizers 0.19.1
|