CassioBN commited on
Commit
96dd97e
1 Parent(s): ae6fea9

Training complete - XLNet-base-LeNER

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlnet/xlnet-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - lener_br
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: XLNet-base_LeNER-Br
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: lener_br
21
+ type: lener_br
22
+ config: lener_br
23
+ split: validation
24
+ args: lener_br
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8062054933875891
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.872317006053935
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8379592915675389
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9783680282796544
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # XLNet-base_LeNER-Br
44
+
45
+ This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on the lener_br dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: nan
48
+ - Precision: 0.8062
49
+ - Recall: 0.8723
50
+ - F1: 0.8380
51
+ - Accuracy: 0.9784
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2531 | 1.0 | 979 | nan | 0.6037 | 0.7788 | 0.6801 | 0.9602 |
83
+ | 0.0531 | 2.0 | 1958 | nan | 0.6865 | 0.8184 | 0.7467 | 0.9657 |
84
+ | 0.0344 | 3.0 | 2937 | nan | 0.7079 | 0.8321 | 0.7650 | 0.9697 |
85
+ | 0.0214 | 4.0 | 3916 | nan | 0.7739 | 0.8514 | 0.8108 | 0.9765 |
86
+ | 0.0176 | 5.0 | 4895 | nan | 0.7407 | 0.8520 | 0.7924 | 0.9712 |
87
+ | 0.0109 | 6.0 | 5874 | nan | 0.7984 | 0.8696 | 0.8325 | 0.9773 |
88
+ | 0.0093 | 7.0 | 6853 | nan | 0.7944 | 0.8657 | 0.8285 | 0.9778 |
89
+ | 0.0056 | 8.0 | 7832 | nan | 0.8130 | 0.8756 | 0.8431 | 0.9779 |
90
+ | 0.0041 | 9.0 | 8811 | nan | 0.8171 | 0.8751 | 0.8451 | 0.9781 |
91
+ | 0.0034 | 10.0 | 9790 | nan | 0.8062 | 0.8723 | 0.8380 | 0.9784 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.41.2
97
+ - Pytorch 2.3.0+cu121
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1