--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Open-Orca/Mistral-7B-OpenOrca - openchat/openchat-3.5-0106 - WizardLM/WizardMath-7B-V1.1 --- # TIES-Merging TIES-Merging is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co./Open-Orca/Mistral-7B-OpenOrca) * [openchat/openchat-3.5-0106](https://huggingface.co./openchat/openchat-3.5-0106) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co./WizardLM/WizardMath-7B-V1.1) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # no parameters necessary for base model - model: Open-Orca/Mistral-7B-OpenOrca parameters: density: 0.5 weight: 0.5 - model: openchat/openchat-3.5-0106 parameters: density: 0.5 weight: 0.5 - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Cartinoe5930/TIES-Merging" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```