CarlosElArtista
commited on
Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +885 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,885 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:6300
|
11 |
+
- loss:MatryoshkaLoss
|
12 |
+
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: BAAI/bge-base-en-v1.5
|
14 |
+
widget:
|
15 |
+
- source_sentence: Chevron provides long-standing employee support programs such as
|
16 |
+
Ombuds, an independent resource, a company hotline for reporting concerns, and
|
17 |
+
the Employee Assistance Program, a confidential consulting service for a range
|
18 |
+
of personal, family, and work-related concerns.
|
19 |
+
sentences:
|
20 |
+
- What is the effective date for the new accounting standard on equity securities
|
21 |
+
for public entities?
|
22 |
+
- What programs does Chevron have to support employee well-being and address workplace
|
23 |
+
issues?
|
24 |
+
- What type of service is provided by Walmart in Mexico to enhance digital connectivity?
|
25 |
+
- source_sentence: ProConnect Tax Online is our cloud-based solution, which is designed
|
26 |
+
for full-service, year-round practices who prepare all forms of consumer and small
|
27 |
+
business returns and integrates with our QuickBooks Online offerings.
|
28 |
+
sentences:
|
29 |
+
- What is the significance of the Company’s trademarks to their businesses?
|
30 |
+
- What are the features of Intuit's ProConnect Tax Online service?
|
31 |
+
- Where can information regarding legal proceedings be found in the document?
|
32 |
+
- source_sentence: The section titled 'Financial Wtatement and Supplementary Data'
|
33 |
+
is labeled with the number 39 in the document.
|
34 |
+
sentences:
|
35 |
+
- What is the numerical label associated with the section on Financial Statements
|
36 |
+
and Supplementary Data in the document?
|
37 |
+
- Why did the effective tax rate increase in 2022 compared to 2021?
|
38 |
+
- What role does intellectual property play in Nike's competitive position?
|
39 |
+
- source_sentence: Our operating cash inflows include cash from vehicle sales and
|
40 |
+
related servicing, customer lease and financing payments, customer deposits, cash
|
41 |
+
from sales of regulatory credits and energy generation and storage products, and
|
42 |
+
interest income on our cash and investments portfolio.
|
43 |
+
sentences:
|
44 |
+
- What was the net increase in cash and cash equivalents for the year ending December
|
45 |
+
30, 2023?
|
46 |
+
- What are the requirements for health insurers and group health plans in providing
|
47 |
+
cost estimates to consumers?
|
48 |
+
- What are the sources of operating cash inflows?
|
49 |
+
- source_sentence: Symtuza (darunavir/C/FTC/TAF), a fixed dose combination product
|
50 |
+
that includes cobicistat ('C'), emtricitabine ('FTC'), and tenofovir alafenamide
|
51 |
+
('TAF'), is commercialized by Janssen Sciences Ireland Unlimited Company.
|
52 |
+
sentences:
|
53 |
+
- What are the primary drugs included in Symtuza and which company commercializes
|
54 |
+
it?
|
55 |
+
- What was reported as the percentage revenue increase for the Asia Pacific & Latin
|
56 |
+
America segment of NIKE from fiscal 2022 to fiscal 2023?
|
57 |
+
- What are the main factors influencing competition for the company's products?
|
58 |
+
pipeline_tag: sentence-similarity
|
59 |
+
library_name: sentence-transformers
|
60 |
+
metrics:
|
61 |
+
- cosine_accuracy@1
|
62 |
+
- cosine_accuracy@3
|
63 |
+
- cosine_accuracy@5
|
64 |
+
- cosine_accuracy@10
|
65 |
+
- cosine_precision@1
|
66 |
+
- cosine_precision@3
|
67 |
+
- cosine_precision@5
|
68 |
+
- cosine_precision@10
|
69 |
+
- cosine_recall@1
|
70 |
+
- cosine_recall@3
|
71 |
+
- cosine_recall@5
|
72 |
+
- cosine_recall@10
|
73 |
+
- cosine_ndcg@10
|
74 |
+
- cosine_mrr@10
|
75 |
+
- cosine_map@100
|
76 |
+
model-index:
|
77 |
+
- name: BGE base Financial Matryoshka
|
78 |
+
results:
|
79 |
+
- task:
|
80 |
+
type: information-retrieval
|
81 |
+
name: Information Retrieval
|
82 |
+
dataset:
|
83 |
+
name: dim 768
|
84 |
+
type: dim_768
|
85 |
+
metrics:
|
86 |
+
- type: cosine_accuracy@1
|
87 |
+
value: 0.67
|
88 |
+
name: Cosine Accuracy@1
|
89 |
+
- type: cosine_accuracy@3
|
90 |
+
value: 0.8071428571428572
|
91 |
+
name: Cosine Accuracy@3
|
92 |
+
- type: cosine_accuracy@5
|
93 |
+
value: 0.8485714285714285
|
94 |
+
name: Cosine Accuracy@5
|
95 |
+
- type: cosine_accuracy@10
|
96 |
+
value: 0.8985714285714286
|
97 |
+
name: Cosine Accuracy@10
|
98 |
+
- type: cosine_precision@1
|
99 |
+
value: 0.67
|
100 |
+
name: Cosine Precision@1
|
101 |
+
- type: cosine_precision@3
|
102 |
+
value: 0.26904761904761904
|
103 |
+
name: Cosine Precision@3
|
104 |
+
- type: cosine_precision@5
|
105 |
+
value: 0.16971428571428568
|
106 |
+
name: Cosine Precision@5
|
107 |
+
- type: cosine_precision@10
|
108 |
+
value: 0.08985714285714284
|
109 |
+
name: Cosine Precision@10
|
110 |
+
- type: cosine_recall@1
|
111 |
+
value: 0.67
|
112 |
+
name: Cosine Recall@1
|
113 |
+
- type: cosine_recall@3
|
114 |
+
value: 0.8071428571428572
|
115 |
+
name: Cosine Recall@3
|
116 |
+
- type: cosine_recall@5
|
117 |
+
value: 0.8485714285714285
|
118 |
+
name: Cosine Recall@5
|
119 |
+
- type: cosine_recall@10
|
120 |
+
value: 0.8985714285714286
|
121 |
+
name: Cosine Recall@10
|
122 |
+
- type: cosine_ndcg@10
|
123 |
+
value: 0.7849037198632751
|
124 |
+
name: Cosine Ndcg@10
|
125 |
+
- type: cosine_mrr@10
|
126 |
+
value: 0.7484699546485256
|
127 |
+
name: Cosine Mrr@10
|
128 |
+
- type: cosine_map@100
|
129 |
+
value: 0.7522833636034203
|
130 |
+
name: Cosine Map@100
|
131 |
+
- task:
|
132 |
+
type: information-retrieval
|
133 |
+
name: Information Retrieval
|
134 |
+
dataset:
|
135 |
+
name: dim 512
|
136 |
+
type: dim_512
|
137 |
+
metrics:
|
138 |
+
- type: cosine_accuracy@1
|
139 |
+
value: 0.6657142857142857
|
140 |
+
name: Cosine Accuracy@1
|
141 |
+
- type: cosine_accuracy@3
|
142 |
+
value: 0.8085714285714286
|
143 |
+
name: Cosine Accuracy@3
|
144 |
+
- type: cosine_accuracy@5
|
145 |
+
value: 0.8414285714285714
|
146 |
+
name: Cosine Accuracy@5
|
147 |
+
- type: cosine_accuracy@10
|
148 |
+
value: 0.8942857142857142
|
149 |
+
name: Cosine Accuracy@10
|
150 |
+
- type: cosine_precision@1
|
151 |
+
value: 0.6657142857142857
|
152 |
+
name: Cosine Precision@1
|
153 |
+
- type: cosine_precision@3
|
154 |
+
value: 0.26952380952380955
|
155 |
+
name: Cosine Precision@3
|
156 |
+
- type: cosine_precision@5
|
157 |
+
value: 0.16828571428571426
|
158 |
+
name: Cosine Precision@5
|
159 |
+
- type: cosine_precision@10
|
160 |
+
value: 0.08942857142857143
|
161 |
+
name: Cosine Precision@10
|
162 |
+
- type: cosine_recall@1
|
163 |
+
value: 0.6657142857142857
|
164 |
+
name: Cosine Recall@1
|
165 |
+
- type: cosine_recall@3
|
166 |
+
value: 0.8085714285714286
|
167 |
+
name: Cosine Recall@3
|
168 |
+
- type: cosine_recall@5
|
169 |
+
value: 0.8414285714285714
|
170 |
+
name: Cosine Recall@5
|
171 |
+
- type: cosine_recall@10
|
172 |
+
value: 0.8942857142857142
|
173 |
+
name: Cosine Recall@10
|
174 |
+
- type: cosine_ndcg@10
|
175 |
+
value: 0.7816751594389505
|
176 |
+
name: Cosine Ndcg@10
|
177 |
+
- type: cosine_mrr@10
|
178 |
+
value: 0.7455107709750564
|
179 |
+
name: Cosine Mrr@10
|
180 |
+
- type: cosine_map@100
|
181 |
+
value: 0.7495566091259342
|
182 |
+
name: Cosine Map@100
|
183 |
+
- task:
|
184 |
+
type: information-retrieval
|
185 |
+
name: Information Retrieval
|
186 |
+
dataset:
|
187 |
+
name: dim 256
|
188 |
+
type: dim_256
|
189 |
+
metrics:
|
190 |
+
- type: cosine_accuracy@1
|
191 |
+
value: 0.6528571428571428
|
192 |
+
name: Cosine Accuracy@1
|
193 |
+
- type: cosine_accuracy@3
|
194 |
+
value: 0.8042857142857143
|
195 |
+
name: Cosine Accuracy@3
|
196 |
+
- type: cosine_accuracy@5
|
197 |
+
value: 0.8357142857142857
|
198 |
+
name: Cosine Accuracy@5
|
199 |
+
- type: cosine_accuracy@10
|
200 |
+
value: 0.8957142857142857
|
201 |
+
name: Cosine Accuracy@10
|
202 |
+
- type: cosine_precision@1
|
203 |
+
value: 0.6528571428571428
|
204 |
+
name: Cosine Precision@1
|
205 |
+
- type: cosine_precision@3
|
206 |
+
value: 0.2680952380952381
|
207 |
+
name: Cosine Precision@3
|
208 |
+
- type: cosine_precision@5
|
209 |
+
value: 0.16714285714285712
|
210 |
+
name: Cosine Precision@5
|
211 |
+
- type: cosine_precision@10
|
212 |
+
value: 0.08957142857142857
|
213 |
+
name: Cosine Precision@10
|
214 |
+
- type: cosine_recall@1
|
215 |
+
value: 0.6528571428571428
|
216 |
+
name: Cosine Recall@1
|
217 |
+
- type: cosine_recall@3
|
218 |
+
value: 0.8042857142857143
|
219 |
+
name: Cosine Recall@3
|
220 |
+
- type: cosine_recall@5
|
221 |
+
value: 0.8357142857142857
|
222 |
+
name: Cosine Recall@5
|
223 |
+
- type: cosine_recall@10
|
224 |
+
value: 0.8957142857142857
|
225 |
+
name: Cosine Recall@10
|
226 |
+
- type: cosine_ndcg@10
|
227 |
+
value: 0.7751159904165151
|
228 |
+
name: Cosine Ndcg@10
|
229 |
+
- type: cosine_mrr@10
|
230 |
+
value: 0.7365447845804987
|
231 |
+
name: Cosine Mrr@10
|
232 |
+
- type: cosine_map@100
|
233 |
+
value: 0.7402062124507567
|
234 |
+
name: Cosine Map@100
|
235 |
+
- task:
|
236 |
+
type: information-retrieval
|
237 |
+
name: Information Retrieval
|
238 |
+
dataset:
|
239 |
+
name: dim 128
|
240 |
+
type: dim_128
|
241 |
+
metrics:
|
242 |
+
- type: cosine_accuracy@1
|
243 |
+
value: 0.6442857142857142
|
244 |
+
name: Cosine Accuracy@1
|
245 |
+
- type: cosine_accuracy@3
|
246 |
+
value: 0.7885714285714286
|
247 |
+
name: Cosine Accuracy@3
|
248 |
+
- type: cosine_accuracy@5
|
249 |
+
value: 0.83
|
250 |
+
name: Cosine Accuracy@5
|
251 |
+
- type: cosine_accuracy@10
|
252 |
+
value: 0.8857142857142857
|
253 |
+
name: Cosine Accuracy@10
|
254 |
+
- type: cosine_precision@1
|
255 |
+
value: 0.6442857142857142
|
256 |
+
name: Cosine Precision@1
|
257 |
+
- type: cosine_precision@3
|
258 |
+
value: 0.26285714285714284
|
259 |
+
name: Cosine Precision@3
|
260 |
+
- type: cosine_precision@5
|
261 |
+
value: 0.16599999999999998
|
262 |
+
name: Cosine Precision@5
|
263 |
+
- type: cosine_precision@10
|
264 |
+
value: 0.08857142857142856
|
265 |
+
name: Cosine Precision@10
|
266 |
+
- type: cosine_recall@1
|
267 |
+
value: 0.6442857142857142
|
268 |
+
name: Cosine Recall@1
|
269 |
+
- type: cosine_recall@3
|
270 |
+
value: 0.7885714285714286
|
271 |
+
name: Cosine Recall@3
|
272 |
+
- type: cosine_recall@5
|
273 |
+
value: 0.83
|
274 |
+
name: Cosine Recall@5
|
275 |
+
- type: cosine_recall@10
|
276 |
+
value: 0.8857142857142857
|
277 |
+
name: Cosine Recall@10
|
278 |
+
- type: cosine_ndcg@10
|
279 |
+
value: 0.7673388064771406
|
280 |
+
name: Cosine Ndcg@10
|
281 |
+
- type: cosine_mrr@10
|
282 |
+
value: 0.7293316326530613
|
283 |
+
name: Cosine Mrr@10
|
284 |
+
- type: cosine_map@100
|
285 |
+
value: 0.7335797814707157
|
286 |
+
name: Cosine Map@100
|
287 |
+
- task:
|
288 |
+
type: information-retrieval
|
289 |
+
name: Information Retrieval
|
290 |
+
dataset:
|
291 |
+
name: dim 64
|
292 |
+
type: dim_64
|
293 |
+
metrics:
|
294 |
+
- type: cosine_accuracy@1
|
295 |
+
value: 0.6057142857142858
|
296 |
+
name: Cosine Accuracy@1
|
297 |
+
- type: cosine_accuracy@3
|
298 |
+
value: 0.78
|
299 |
+
name: Cosine Accuracy@3
|
300 |
+
- type: cosine_accuracy@5
|
301 |
+
value: 0.8214285714285714
|
302 |
+
name: Cosine Accuracy@5
|
303 |
+
- type: cosine_accuracy@10
|
304 |
+
value: 0.8814285714285715
|
305 |
+
name: Cosine Accuracy@10
|
306 |
+
- type: cosine_precision@1
|
307 |
+
value: 0.6057142857142858
|
308 |
+
name: Cosine Precision@1
|
309 |
+
- type: cosine_precision@3
|
310 |
+
value: 0.26
|
311 |
+
name: Cosine Precision@3
|
312 |
+
- type: cosine_precision@5
|
313 |
+
value: 0.16428571428571426
|
314 |
+
name: Cosine Precision@5
|
315 |
+
- type: cosine_precision@10
|
316 |
+
value: 0.08814285714285712
|
317 |
+
name: Cosine Precision@10
|
318 |
+
- type: cosine_recall@1
|
319 |
+
value: 0.6057142857142858
|
320 |
+
name: Cosine Recall@1
|
321 |
+
- type: cosine_recall@3
|
322 |
+
value: 0.78
|
323 |
+
name: Cosine Recall@3
|
324 |
+
- type: cosine_recall@5
|
325 |
+
value: 0.8214285714285714
|
326 |
+
name: Cosine Recall@5
|
327 |
+
- type: cosine_recall@10
|
328 |
+
value: 0.8814285714285715
|
329 |
+
name: Cosine Recall@10
|
330 |
+
- type: cosine_ndcg@10
|
331 |
+
value: 0.7451487636214842
|
332 |
+
name: Cosine Ndcg@10
|
333 |
+
- type: cosine_mrr@10
|
334 |
+
value: 0.7013752834467117
|
335 |
+
name: Cosine Mrr@10
|
336 |
+
- type: cosine_map@100
|
337 |
+
value: 0.7052270125234881
|
338 |
+
name: Cosine Map@100
|
339 |
+
---
|
340 |
+
|
341 |
+
# BGE base Financial Matryoshka
|
342 |
+
|
343 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
344 |
+
|
345 |
+
## Model Details
|
346 |
+
|
347 |
+
### Model Description
|
348 |
+
- **Model Type:** Sentence Transformer
|
349 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
350 |
+
- **Maximum Sequence Length:** 512 tokens
|
351 |
+
- **Output Dimensionality:** 768 dimensions
|
352 |
+
- **Similarity Function:** Cosine Similarity
|
353 |
+
- **Training Dataset:**
|
354 |
+
- json
|
355 |
+
- **Language:** en
|
356 |
+
- **License:** apache-2.0
|
357 |
+
|
358 |
+
### Model Sources
|
359 |
+
|
360 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
361 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
362 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
363 |
+
|
364 |
+
### Full Model Architecture
|
365 |
+
|
366 |
+
```
|
367 |
+
SentenceTransformer(
|
368 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
369 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
370 |
+
(2): Normalize()
|
371 |
+
)
|
372 |
+
```
|
373 |
+
|
374 |
+
## Usage
|
375 |
+
|
376 |
+
### Direct Usage (Sentence Transformers)
|
377 |
+
|
378 |
+
First install the Sentence Transformers library:
|
379 |
+
|
380 |
+
```bash
|
381 |
+
pip install -U sentence-transformers
|
382 |
+
```
|
383 |
+
|
384 |
+
Then you can load this model and run inference.
|
385 |
+
```python
|
386 |
+
from sentence_transformers import SentenceTransformer
|
387 |
+
|
388 |
+
# Download from the 🤗 Hub
|
389 |
+
model = SentenceTransformer("CarlosElArtista/bge-base-financial-matryoshka")
|
390 |
+
# Run inference
|
391 |
+
sentences = [
|
392 |
+
"Symtuza (darunavir/C/FTC/TAF), a fixed dose combination product that includes cobicistat ('C'), emtricitabine ('FTC'), and tenofovir alafenamide ('TAF'), is commercialized by Janssen Sciences Ireland Unlimited Company.",
|
393 |
+
'What are the primary drugs included in Symtuza and which company commercializes it?',
|
394 |
+
'What was reported as the percentage revenue increase for the Asia Pacific & Latin America segment of NIKE from fiscal 2022 to fiscal 2023?',
|
395 |
+
]
|
396 |
+
embeddings = model.encode(sentences)
|
397 |
+
print(embeddings.shape)
|
398 |
+
# [3, 768]
|
399 |
+
|
400 |
+
# Get the similarity scores for the embeddings
|
401 |
+
similarities = model.similarity(embeddings, embeddings)
|
402 |
+
print(similarities.shape)
|
403 |
+
# [3, 3]
|
404 |
+
```
|
405 |
+
|
406 |
+
<!--
|
407 |
+
### Direct Usage (Transformers)
|
408 |
+
|
409 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
410 |
+
|
411 |
+
</details>
|
412 |
+
-->
|
413 |
+
|
414 |
+
<!--
|
415 |
+
### Downstream Usage (Sentence Transformers)
|
416 |
+
|
417 |
+
You can finetune this model on your own dataset.
|
418 |
+
|
419 |
+
<details><summary>Click to expand</summary>
|
420 |
+
|
421 |
+
</details>
|
422 |
+
-->
|
423 |
+
|
424 |
+
<!--
|
425 |
+
### Out-of-Scope Use
|
426 |
+
|
427 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
428 |
+
-->
|
429 |
+
|
430 |
+
## Evaluation
|
431 |
+
|
432 |
+
### Metrics
|
433 |
+
|
434 |
+
#### Information Retrieval
|
435 |
+
|
436 |
+
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
437 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
438 |
+
|
439 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
440 |
+
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
441 |
+
| cosine_accuracy@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
|
442 |
+
| cosine_accuracy@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
|
443 |
+
| cosine_accuracy@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
|
444 |
+
| cosine_accuracy@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
|
445 |
+
| cosine_precision@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
|
446 |
+
| cosine_precision@3 | 0.269 | 0.2695 | 0.2681 | 0.2629 | 0.26 |
|
447 |
+
| cosine_precision@5 | 0.1697 | 0.1683 | 0.1671 | 0.166 | 0.1643 |
|
448 |
+
| cosine_precision@10 | 0.0899 | 0.0894 | 0.0896 | 0.0886 | 0.0881 |
|
449 |
+
| cosine_recall@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
|
450 |
+
| cosine_recall@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
|
451 |
+
| cosine_recall@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
|
452 |
+
| cosine_recall@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
|
453 |
+
| **cosine_ndcg@10** | **0.7849** | **0.7817** | **0.7751** | **0.7673** | **0.7451** |
|
454 |
+
| cosine_mrr@10 | 0.7485 | 0.7455 | 0.7365 | 0.7293 | 0.7014 |
|
455 |
+
| cosine_map@100 | 0.7523 | 0.7496 | 0.7402 | 0.7336 | 0.7052 |
|
456 |
+
|
457 |
+
<!--
|
458 |
+
## Bias, Risks and Limitations
|
459 |
+
|
460 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
461 |
+
-->
|
462 |
+
|
463 |
+
<!--
|
464 |
+
### Recommendations
|
465 |
+
|
466 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
467 |
+
-->
|
468 |
+
|
469 |
+
## Training Details
|
470 |
+
|
471 |
+
### Training Dataset
|
472 |
+
|
473 |
+
#### json
|
474 |
+
|
475 |
+
* Dataset: json
|
476 |
+
* Size: 6,300 training samples
|
477 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
478 |
+
* Approximate statistics based on the first 1000 samples:
|
479 |
+
| | positive | anchor |
|
480 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
481 |
+
| type | string | string |
|
482 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 46.05 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.55 tokens</li><li>max: 51 tokens</li></ul> |
|
483 |
+
* Samples:
|
484 |
+
| positive | anchor |
|
485 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
|
486 |
+
| <code>The AMPTC for microinverters decreases by 25% each year beginning in 2030 and ending after 2032.</code> | <code>What is the trajectory of the AMPTC for microinverters starting in 2030?</code> |
|
487 |
+
| <code>results. Legal and Other Contingencies The Company is subject to various legal proceedings and claims that arise in the ordinary course of business, the outcomes of which are inherently uncertain. The Company records a liability when it is probable that a loss has been incurred and the amount is reasonably estimable, the determination of which requires significant judgment. Resolution of legal matters in a manner inconsistent with management’s expectations could have a material impact on the Company’s financial condition and operating results. Apple Inc. | 2023 Form 10-K | 25</code> | <code>What does the Company face in the ordinary course of business related to legal matters?</code> |
|
488 |
+
| <code>In 2023, the company recorded other operating charges of $1,951 million.</code> | <code>What was the total amount of other operating charges recorded by the company in 2023?</code> |
|
489 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
490 |
+
```json
|
491 |
+
{
|
492 |
+
"loss": "MultipleNegativesRankingLoss",
|
493 |
+
"matryoshka_dims": [
|
494 |
+
768,
|
495 |
+
512,
|
496 |
+
256,
|
497 |
+
128,
|
498 |
+
64
|
499 |
+
],
|
500 |
+
"matryoshka_weights": [
|
501 |
+
1,
|
502 |
+
1,
|
503 |
+
1,
|
504 |
+
1,
|
505 |
+
1
|
506 |
+
],
|
507 |
+
"n_dims_per_step": -1
|
508 |
+
}
|
509 |
+
```
|
510 |
+
|
511 |
+
### Training Hyperparameters
|
512 |
+
#### Non-Default Hyperparameters
|
513 |
+
|
514 |
+
- `eval_strategy`: epoch
|
515 |
+
- `per_device_train_batch_size`: 4
|
516 |
+
- `per_device_eval_batch_size`: 4
|
517 |
+
- `gradient_accumulation_steps`: 4
|
518 |
+
- `learning_rate`: 2e-05
|
519 |
+
- `num_train_epochs`: 4
|
520 |
+
- `lr_scheduler_type`: cosine
|
521 |
+
- `warmup_ratio`: 0.1
|
522 |
+
- `bf16`: True
|
523 |
+
- `tf32`: False
|
524 |
+
- `load_best_model_at_end`: True
|
525 |
+
- `optim`: adamw_torch_fused
|
526 |
+
- `batch_sampler`: no_duplicates
|
527 |
+
|
528 |
+
#### All Hyperparameters
|
529 |
+
<details><summary>Click to expand</summary>
|
530 |
+
|
531 |
+
- `overwrite_output_dir`: False
|
532 |
+
- `do_predict`: False
|
533 |
+
- `eval_strategy`: epoch
|
534 |
+
- `prediction_loss_only`: True
|
535 |
+
- `per_device_train_batch_size`: 4
|
536 |
+
- `per_device_eval_batch_size`: 4
|
537 |
+
- `per_gpu_train_batch_size`: None
|
538 |
+
- `per_gpu_eval_batch_size`: None
|
539 |
+
- `gradient_accumulation_steps`: 4
|
540 |
+
- `eval_accumulation_steps`: None
|
541 |
+
- `torch_empty_cache_steps`: None
|
542 |
+
- `learning_rate`: 2e-05
|
543 |
+
- `weight_decay`: 0.0
|
544 |
+
- `adam_beta1`: 0.9
|
545 |
+
- `adam_beta2`: 0.999
|
546 |
+
- `adam_epsilon`: 1e-08
|
547 |
+
- `max_grad_norm`: 1.0
|
548 |
+
- `num_train_epochs`: 4
|
549 |
+
- `max_steps`: -1
|
550 |
+
- `lr_scheduler_type`: cosine
|
551 |
+
- `lr_scheduler_kwargs`: {}
|
552 |
+
- `warmup_ratio`: 0.1
|
553 |
+
- `warmup_steps`: 0
|
554 |
+
- `log_level`: passive
|
555 |
+
- `log_level_replica`: warning
|
556 |
+
- `log_on_each_node`: True
|
557 |
+
- `logging_nan_inf_filter`: True
|
558 |
+
- `save_safetensors`: True
|
559 |
+
- `save_on_each_node`: False
|
560 |
+
- `save_only_model`: False
|
561 |
+
- `restore_callback_states_from_checkpoint`: False
|
562 |
+
- `no_cuda`: False
|
563 |
+
- `use_cpu`: False
|
564 |
+
- `use_mps_device`: False
|
565 |
+
- `seed`: 42
|
566 |
+
- `data_seed`: None
|
567 |
+
- `jit_mode_eval`: False
|
568 |
+
- `use_ipex`: False
|
569 |
+
- `bf16`: True
|
570 |
+
- `fp16`: False
|
571 |
+
- `fp16_opt_level`: O1
|
572 |
+
- `half_precision_backend`: auto
|
573 |
+
- `bf16_full_eval`: False
|
574 |
+
- `fp16_full_eval`: False
|
575 |
+
- `tf32`: False
|
576 |
+
- `local_rank`: 0
|
577 |
+
- `ddp_backend`: None
|
578 |
+
- `tpu_num_cores`: None
|
579 |
+
- `tpu_metrics_debug`: False
|
580 |
+
- `debug`: []
|
581 |
+
- `dataloader_drop_last`: False
|
582 |
+
- `dataloader_num_workers`: 0
|
583 |
+
- `dataloader_prefetch_factor`: None
|
584 |
+
- `past_index`: -1
|
585 |
+
- `disable_tqdm`: False
|
586 |
+
- `remove_unused_columns`: True
|
587 |
+
- `label_names`: None
|
588 |
+
- `load_best_model_at_end`: True
|
589 |
+
- `ignore_data_skip`: False
|
590 |
+
- `fsdp`: []
|
591 |
+
- `fsdp_min_num_params`: 0
|
592 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
593 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
594 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
595 |
+
- `deepspeed`: None
|
596 |
+
- `label_smoothing_factor`: 0.0
|
597 |
+
- `optim`: adamw_torch_fused
|
598 |
+
- `optim_args`: None
|
599 |
+
- `adafactor`: False
|
600 |
+
- `group_by_length`: False
|
601 |
+
- `length_column_name`: length
|
602 |
+
- `ddp_find_unused_parameters`: None
|
603 |
+
- `ddp_bucket_cap_mb`: None
|
604 |
+
- `ddp_broadcast_buffers`: False
|
605 |
+
- `dataloader_pin_memory`: True
|
606 |
+
- `dataloader_persistent_workers`: False
|
607 |
+
- `skip_memory_metrics`: True
|
608 |
+
- `use_legacy_prediction_loop`: False
|
609 |
+
- `push_to_hub`: False
|
610 |
+
- `resume_from_checkpoint`: None
|
611 |
+
- `hub_model_id`: None
|
612 |
+
- `hub_strategy`: every_save
|
613 |
+
- `hub_private_repo`: None
|
614 |
+
- `hub_always_push`: False
|
615 |
+
- `gradient_checkpointing`: False
|
616 |
+
- `gradient_checkpointing_kwargs`: None
|
617 |
+
- `include_inputs_for_metrics`: False
|
618 |
+
- `include_for_metrics`: []
|
619 |
+
- `eval_do_concat_batches`: True
|
620 |
+
- `fp16_backend`: auto
|
621 |
+
- `push_to_hub_model_id`: None
|
622 |
+
- `push_to_hub_organization`: None
|
623 |
+
- `mp_parameters`:
|
624 |
+
- `auto_find_batch_size`: False
|
625 |
+
- `full_determinism`: False
|
626 |
+
- `torchdynamo`: None
|
627 |
+
- `ray_scope`: last
|
628 |
+
- `ddp_timeout`: 1800
|
629 |
+
- `torch_compile`: False
|
630 |
+
- `torch_compile_backend`: None
|
631 |
+
- `torch_compile_mode`: None
|
632 |
+
- `dispatch_batches`: None
|
633 |
+
- `split_batches`: None
|
634 |
+
- `include_tokens_per_second`: False
|
635 |
+
- `include_num_input_tokens_seen`: False
|
636 |
+
- `neftune_noise_alpha`: None
|
637 |
+
- `optim_target_modules`: None
|
638 |
+
- `batch_eval_metrics`: False
|
639 |
+
- `eval_on_start`: False
|
640 |
+
- `use_liger_kernel`: False
|
641 |
+
- `eval_use_gather_object`: False
|
642 |
+
- `average_tokens_across_devices`: False
|
643 |
+
- `prompts`: None
|
644 |
+
- `batch_sampler`: no_duplicates
|
645 |
+
- `multi_dataset_batch_sampler`: proportional
|
646 |
+
|
647 |
+
</details>
|
648 |
+
|
649 |
+
### Training Logs
|
650 |
+
<details><summary>Click to expand</summary>
|
651 |
+
|
652 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
653 |
+
|:-------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
654 |
+
| 0.0254 | 10 | 0.3873 | - | - | - | - | - |
|
655 |
+
| 0.0508 | 20 | 0.1907 | - | - | - | - | - |
|
656 |
+
| 0.0762 | 30 | 0.3031 | - | - | - | - | - |
|
657 |
+
| 0.1016 | 40 | 0.3314 | - | - | - | - | - |
|
658 |
+
| 0.1270 | 50 | 0.3452 | - | - | - | - | - |
|
659 |
+
| 0.1524 | 60 | 0.1831 | - | - | - | - | - |
|
660 |
+
| 0.1778 | 70 | 0.1286 | - | - | - | - | - |
|
661 |
+
| 0.2032 | 80 | 0.1162 | - | - | - | - | - |
|
662 |
+
| 0.2286 | 90 | 0.1464 | - | - | - | - | - |
|
663 |
+
| 0.2540 | 100 | 0.0409 | - | - | - | - | - |
|
664 |
+
| 0.2794 | 110 | 0.0886 | - | - | - | - | - |
|
665 |
+
| 0.3048 | 120 | 0.0964 | - | - | - | - | - |
|
666 |
+
| 0.3302 | 130 | 0.175 | - | - | - | - | - |
|
667 |
+
| 0.3556 | 140 | 0.1102 | - | - | - | - | - |
|
668 |
+
| 0.3810 | 150 | 0.0705 | - | - | - | - | - |
|
669 |
+
| 0.4063 | 160 | 0.0892 | - | - | - | - | - |
|
670 |
+
| 0.4317 | 170 | 0.1246 | - | - | - | - | - |
|
671 |
+
| 0.4571 | 180 | 0.0924 | - | - | - | - | - |
|
672 |
+
| 0.4825 | 190 | 0.05 | - | - | - | - | - |
|
673 |
+
| 0.5079 | 200 | 0.0676 | - | - | - | - | - |
|
674 |
+
| 0.5333 | 210 | 0.0746 | - | - | - | - | - |
|
675 |
+
| 0.5587 | 220 | 0.2014 | - | - | - | - | - |
|
676 |
+
| 0.5841 | 230 | 0.0568 | - | - | - | - | - |
|
677 |
+
| 0.6095 | 240 | 0.118 | - | - | - | - | - |
|
678 |
+
| 0.6349 | 250 | 0.0833 | - | - | - | - | - |
|
679 |
+
| 0.6603 | 260 | 0.1091 | - | - | - | - | - |
|
680 |
+
| 0.6857 | 270 | 0.1108 | - | - | - | - | - |
|
681 |
+
| 0.7111 | 280 | 0.1026 | - | - | - | - | - |
|
682 |
+
| 0.7365 | 290 | 0.1485 | - | - | - | - | - |
|
683 |
+
| 0.7619 | 300 | 0.0888 | - | - | - | - | - |
|
684 |
+
| 0.7873 | 310 | 0.0366 | - | - | - | - | - |
|
685 |
+
| 0.8127 | 320 | 0.0717 | - | - | - | - | - |
|
686 |
+
| 0.8381 | 330 | 0.0703 | - | - | - | - | - |
|
687 |
+
| 0.8635 | 340 | 0.0531 | - | - | - | - | - |
|
688 |
+
| 0.8889 | 350 | 0.0488 | - | - | - | - | - |
|
689 |
+
| 0.9143 | 360 | 0.0321 | - | - | - | - | - |
|
690 |
+
| 0.9397 | 370 | 0.1364 | - | - | - | - | - |
|
691 |
+
| 0.9651 | 380 | 0.2325 | - | - | - | - | - |
|
692 |
+
| 0.9905 | 390 | 0.0346 | - | - | - | - | - |
|
693 |
+
| 1.0 | 394 | - | 0.7833 | 0.7757 | 0.7692 | 0.7525 | 0.7314 |
|
694 |
+
| 1.0152 | 400 | 0.0742 | - | - | - | - | - |
|
695 |
+
| 1.0406 | 410 | 0.0147 | - | - | - | - | - |
|
696 |
+
| 1.0660 | 420 | 0.0777 | - | - | - | - | - |
|
697 |
+
| 1.0914 | 430 | 0.0353 | - | - | - | - | - |
|
698 |
+
| 1.1168 | 440 | 0.0093 | - | - | - | - | - |
|
699 |
+
| 1.1422 | 450 | 0.1484 | - | - | - | - | - |
|
700 |
+
| 1.1676 | 460 | 0.0167 | - | - | - | - | - |
|
701 |
+
| 1.1930 | 470 | 0.0039 | - | - | - | - | - |
|
702 |
+
| 1.2184 | 480 | 0.007 | - | - | - | - | - |
|
703 |
+
| 1.2438 | 490 | 0.0043 | - | - | - | - | - |
|
704 |
+
| 1.2692 | 500 | 0.0156 | - | - | - | - | - |
|
705 |
+
| 1.2946 | 510 | 0.0519 | - | - | - | - | - |
|
706 |
+
| 1.32 | 520 | 0.0163 | - | - | - | - | - |
|
707 |
+
| 1.3454 | 530 | 0.0214 | - | - | - | - | - |
|
708 |
+
| 1.3708 | 540 | 0.0025 | - | - | - | - | - |
|
709 |
+
| 1.3962 | 550 | 0.0129 | - | - | - | - | - |
|
710 |
+
| 1.4216 | 560 | 0.0045 | - | - | - | - | - |
|
711 |
+
| 1.4470 | 570 | 0.0025 | - | - | - | - | - |
|
712 |
+
| 1.4724 | 580 | 0.0023 | - | - | - | - | - |
|
713 |
+
| 1.4978 | 590 | 0.0114 | - | - | - | - | - |
|
714 |
+
| 1.5232 | 600 | 0.0636 | - | - | - | - | - |
|
715 |
+
| 1.5486 | 610 | 0.0066 | - | - | - | - | - |
|
716 |
+
| 1.5740 | 620 | 0.0112 | - | - | - | - | - |
|
717 |
+
| 1.5994 | 630 | 0.0087 | - | - | - | - | - |
|
718 |
+
| 1.6248 | 640 | 0.0026 | - | - | - | - | - |
|
719 |
+
| 1.6502 | 650 | 0.017 | - | - | - | - | - |
|
720 |
+
| 1.6756 | 660 | 0.0741 | - | - | - | - | - |
|
721 |
+
| 1.7010 | 670 | 0.0041 | - | - | - | - | - |
|
722 |
+
| 1.7263 | 680 | 0.0339 | - | - | - | - | - |
|
723 |
+
| 1.7517 | 690 | 0.003 | - | - | - | - | - |
|
724 |
+
| 1.7771 | 700 | 0.0052 | - | - | - | - | - |
|
725 |
+
| 1.8025 | 710 | 0.0464 | - | - | - | - | - |
|
726 |
+
| 1.8279 | 720 | 0.0015 | - | - | - | - | - |
|
727 |
+
| 1.8533 | 730 | 0.0169 | - | - | - | - | - |
|
728 |
+
| 1.8787 | 740 | 0.0178 | - | - | - | - | - |
|
729 |
+
| 1.9041 | 750 | 0.0033 | - | - | - | - | - |
|
730 |
+
| 1.9295 | 760 | 0.0165 | - | - | - | - | - |
|
731 |
+
| 1.9549 | 770 | 0.0091 | - | - | - | - | - |
|
732 |
+
| 1.9803 | 780 | 0.1162 | - | - | - | - | - |
|
733 |
+
| 2.0 | 788 | - | 0.7849 | 0.7820 | 0.7764 | 0.7661 | 0.7469 |
|
734 |
+
| 2.0051 | 790 | 0.0077 | - | - | - | - | - |
|
735 |
+
| 2.0305 | 800 | 0.0024 | - | - | - | - | - |
|
736 |
+
| 2.0559 | 810 | 0.0025 | - | - | - | - | - |
|
737 |
+
| 2.0813 | 820 | 0.0032 | - | - | - | - | - |
|
738 |
+
| 2.1067 | 830 | 0.0022 | - | - | - | - | - |
|
739 |
+
| 2.1321 | 840 | 0.0428 | - | - | - | - | - |
|
740 |
+
| 2.1575 | 850 | 0.0027 | - | - | - | - | - |
|
741 |
+
| 2.1829 | 860 | 0.0015 | - | - | - | - | - |
|
742 |
+
| 2.2083 | 870 | 0.0028 | - | - | - | - | - |
|
743 |
+
| 2.2337 | 880 | 0.0006 | - | - | - | - | - |
|
744 |
+
| 2.2590 | 890 | 0.0005 | - | - | - | - | - |
|
745 |
+
| 2.2844 | 900 | 0.0025 | - | - | - | - | - |
|
746 |
+
| 2.3098 | 910 | 0.002 | - | - | - | - | - |
|
747 |
+
| 2.3352 | 920 | 0.002 | - | - | - | - | - |
|
748 |
+
| 2.3606 | 930 | 0.0105 | - | - | - | - | - |
|
749 |
+
| 2.3860 | 940 | 0.0061 | - | - | - | - | - |
|
750 |
+
| 2.4114 | 950 | 0.0017 | - | - | - | - | - |
|
751 |
+
| 2.4368 | 960 | 0.0009 | - | - | - | - | - |
|
752 |
+
| 2.4622 | 970 | 0.0007 | - | - | - | - | - |
|
753 |
+
| 2.4876 | 980 | 0.001 | - | - | - | - | - |
|
754 |
+
| 2.5130 | 990 | 0.0008 | - | - | - | - | - |
|
755 |
+
| 2.5384 | 1000 | 0.044 | - | - | - | - | - |
|
756 |
+
| 2.5638 | 1010 | 0.0012 | - | - | - | - | - |
|
757 |
+
| 2.5892 | 1020 | 0.0103 | - | - | - | - | - |
|
758 |
+
| 2.6146 | 1030 | 0.0003 | - | - | - | - | - |
|
759 |
+
| 2.64 | 1040 | 0.0005 | - | - | - | - | - |
|
760 |
+
| 2.6654 | 1050 | 0.0972 | - | - | - | - | - |
|
761 |
+
| 2.6908 | 1060 | 0.0011 | - | - | - | - | - |
|
762 |
+
| 2.7162 | 1070 | 0.0093 | - | - | - | - | - |
|
763 |
+
| 2.7416 | 1080 | 0.0028 | - | - | - | - | - |
|
764 |
+
| 2.7670 | 1090 | 0.0004 | - | - | - | - | - |
|
765 |
+
| 2.7924 | 1100 | 0.0231 | - | - | - | - | - |
|
766 |
+
| 2.8178 | 1110 | 0.0021 | - | - | - | - | - |
|
767 |
+
| 2.8432 | 1120 | 0.0013 | - | - | - | - | - |
|
768 |
+
| 2.8686 | 1130 | 0.0012 | - | - | - | - | - |
|
769 |
+
| 2.8940 | 1140 | 0.002 | - | - | - | - | - |
|
770 |
+
| 2.9194 | 1150 | 0.001 | - | - | - | - | - |
|
771 |
+
| 2.9448 | 1160 | 0.007 | - | - | - | - | - |
|
772 |
+
| 2.9702 | 1170 | 0.018 | - | - | - | - | - |
|
773 |
+
| 2.9956 | 1180 | 0.001 | - | - | - | - | - |
|
774 |
+
| **3.0** | **1182** | **-** | **0.7832** | **0.7823** | **0.7754** | **0.7682** | **0.744** |
|
775 |
+
| 3.0203 | 1190 | 0.0028 | - | - | - | - | - |
|
776 |
+
| 3.0457 | 1200 | 0.0005 | - | - | - | - | - |
|
777 |
+
| 3.0711 | 1210 | 0.0007 | - | - | - | - | - |
|
778 |
+
| 3.0965 | 1220 | 0.0008 | - | - | - | - | - |
|
779 |
+
| 3.1219 | 1230 | 0.0123 | - | - | - | - | - |
|
780 |
+
| 3.1473 | 1240 | 0.0014 | - | - | - | - | - |
|
781 |
+
| 3.1727 | 1250 | 0.0005 | - | - | - | - | - |
|
782 |
+
| 3.1981 | 1260 | 0.0003 | - | - | - | - | - |
|
783 |
+
| 3.2235 | 1270 | 0.0006 | - | - | - | - | - |
|
784 |
+
| 3.2489 | 1280 | 0.0004 | - | - | - | - | - |
|
785 |
+
| 3.2743 | 1290 | 0.0007 | - | - | - | - | - |
|
786 |
+
| 3.2997 | 1300 | 0.0011 | - | - | - | - | - |
|
787 |
+
| 3.3251 | 1310 | 0.0006 | - | - | - | - | - |
|
788 |
+
| 3.3505 | 1320 | 0.0019 | - | - | - | - | - |
|
789 |
+
| 3.3759 | 1330 | 0.0006 | - | - | - | - | - |
|
790 |
+
| 3.4013 | 1340 | 0.0011 | - | - | - | - | - |
|
791 |
+
| 3.4267 | 1350 | 0.0006 | - | - | - | - | - |
|
792 |
+
| 3.4521 | 1360 | 0.0006 | - | - | - | - | - |
|
793 |
+
| 3.4775 | 1370 | 0.0004 | - | - | - | - | - |
|
794 |
+
| 3.5029 | 1380 | 0.0007 | - | - | - | - | - |
|
795 |
+
| 3.5283 | 1390 | 0.0383 | - | - | - | - | - |
|
796 |
+
| 3.5537 | 1400 | 0.0007 | - | - | - | - | - |
|
797 |
+
| 3.5790 | 1410 | 0.0019 | - | - | - | - | - |
|
798 |
+
| 3.6044 | 1420 | 0.0038 | - | - | - | - | - |
|
799 |
+
| 3.6298 | 1430 | 0.0007 | - | - | - | - | - |
|
800 |
+
| 3.6552 | 1440 | 0.0463 | - | - | - | - | - |
|
801 |
+
| 3.6806 | 1450 | 0.0373 | - | - | - | - | - |
|
802 |
+
| 3.7060 | 1460 | 0.0007 | - | - | - | - | - |
|
803 |
+
| 3.7314 | 1470 | 0.0022 | - | - | - | - | - |
|
804 |
+
| 3.7568 | 1480 | 0.0005 | - | - | - | - | - |
|
805 |
+
| 3.7822 | 1490 | 0.0007 | - | - | - | - | - |
|
806 |
+
| 3.8076 | 1500 | 0.0177 | - | - | - | - | - |
|
807 |
+
| 3.8330 | 1510 | 0.0006 | - | - | - | - | - |
|
808 |
+
| 3.8584 | 1520 | 0.0009 | - | - | - | - | - |
|
809 |
+
| 3.8838 | 1530 | 0.0012 | - | - | - | - | - |
|
810 |
+
| 3.9092 | 1540 | 0.0009 | - | - | - | - | - |
|
811 |
+
| 3.9346 | 1550 | 0.0012 | - | - | - | - | - |
|
812 |
+
| 3.96 | 1560 | 0.0004 | - | - | - | - | - |
|
813 |
+
| 3.9854 | 1570 | 0.0064 | - | - | - | - | - |
|
814 |
+
| 3.9905 | 1572 | - | 0.7849 | 0.7817 | 0.7751 | 0.7673 | 0.7451 |
|
815 |
+
|
816 |
+
* The bold row denotes the saved checkpoint.
|
817 |
+
</details>
|
818 |
+
|
819 |
+
### Framework Versions
|
820 |
+
- Python: 3.12.8
|
821 |
+
- Sentence Transformers: 3.3.1
|
822 |
+
- Transformers: 4.47.1
|
823 |
+
- PyTorch: 2.5.1+cu124
|
824 |
+
- Accelerate: 1.2.1
|
825 |
+
- Datasets: 3.2.0
|
826 |
+
- Tokenizers: 0.21.0
|
827 |
+
|
828 |
+
## Citation
|
829 |
+
|
830 |
+
### BibTeX
|
831 |
+
|
832 |
+
#### Sentence Transformers
|
833 |
+
```bibtex
|
834 |
+
@inproceedings{reimers-2019-sentence-bert,
|
835 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
836 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
837 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
838 |
+
month = "11",
|
839 |
+
year = "2019",
|
840 |
+
publisher = "Association for Computational Linguistics",
|
841 |
+
url = "https://arxiv.org/abs/1908.10084",
|
842 |
+
}
|
843 |
+
```
|
844 |
+
|
845 |
+
#### MatryoshkaLoss
|
846 |
+
```bibtex
|
847 |
+
@misc{kusupati2024matryoshka,
|
848 |
+
title={Matryoshka Representation Learning},
|
849 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
850 |
+
year={2024},
|
851 |
+
eprint={2205.13147},
|
852 |
+
archivePrefix={arXiv},
|
853 |
+
primaryClass={cs.LG}
|
854 |
+
}
|
855 |
+
```
|
856 |
+
|
857 |
+
#### MultipleNegativesRankingLoss
|
858 |
+
```bibtex
|
859 |
+
@misc{henderson2017efficient,
|
860 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
861 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
862 |
+
year={2017},
|
863 |
+
eprint={1705.00652},
|
864 |
+
archivePrefix={arXiv},
|
865 |
+
primaryClass={cs.CL}
|
866 |
+
}
|
867 |
+
```
|
868 |
+
|
869 |
+
<!--
|
870 |
+
## Glossary
|
871 |
+
|
872 |
+
*Clearly define terms in order to be accessible across audiences.*
|
873 |
+
-->
|
874 |
+
|
875 |
+
<!--
|
876 |
+
## Model Card Authors
|
877 |
+
|
878 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
879 |
+
-->
|
880 |
+
|
881 |
+
<!--
|
882 |
+
## Model Card Contact
|
883 |
+
|
884 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
885 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.47.1",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d622a1c180323a995d3b8ac0c14df0f8c091a66df8b502a6a5f9e8912517331
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|