Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,25 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
4 |
-
import
|
5 |
|
6 |
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
model = AutoModelForCausalLM.from_pretrained("canstralian/CyberAttackDetection")
|
12 |
|
13 |
# Define the input data model
|
14 |
class LogData(BaseModel):
|
15 |
log: str
|
16 |
|
17 |
@app.post("/predict")
|
18 |
-
async def
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
-
|
29 |
-
return {"prediction": prediction}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from src.model_inference import predict
|
4 |
+
from src.utils import setup_logging, log_info, log_error
|
5 |
|
6 |
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
setup_logging()
|
|
|
11 |
|
12 |
# Define the input data model
|
13 |
class LogData(BaseModel):
|
14 |
log: str
|
15 |
|
16 |
@app.post("/predict")
|
17 |
+
async def predict_route(data: LogData):
|
18 |
+
try:
|
19 |
+
# Perform prediction
|
20 |
+
prediction = predict(data.log)
|
21 |
+
log_info(f'Prediction: {prediction}')
|
22 |
+
return {"prediction": prediction}
|
23 |
+
except Exception as e:
|
24 |
+
log_error(f'An error occurred: {e}')
|
25 |
+
return {"error": str(e)}
|
|
|
|
|
|