--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: whisper-large-final results: [] language: - mn --- # whisper-large-final This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0112 - eval_wer: 1.1712 - eval_runtime: 982.7637 - eval_samples_per_second: 1.892 - eval_steps_per_second: 0.237 - epoch: 6.4205 - step: 4000 ## Model description Step Training Loss Validation Loss Wer 500 0.431500 0.412413 48.265244 1000 0.244500 0.230148 29.284654 1500 0.134300 0.122366 16.588772 2000 0.055800 0.069241 10.551493 2500 0.045700 0.035967 4.860615 3000 0.027900 0.024117 3.425524 3500 0.011000 0.016053 1.770495 4000 0.004800 0.011227 1.171166 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.0 - Datasets 2.19.1 - Tokenizers 0.19.1