--- license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-en2 results: [] --- # whisper-tiny-en2 This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co./openai/whisper-tiny.en) on [hf-internal-testing/librispeech_asr_dummy](https://huggingface.co./datasets/hf-internal-testing/librispeech_asr_dummy). It achieves the following results on the evaluation set: - Loss: 0.9164 - Wer Ortho: 33.1839 - Wer: 33.7778 ## Model description It is fine-tuned version of whisper-tiny model for the audio/video transcription feature in [PersonAI](https://personaiweb.vercel.app) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0008 | 125.0 | 500 | 0.9164 | 33.1839 | 33.7778 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1