init test
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- thicc-ppo-LunarLander-rc.zip +2 -2
- thicc-ppo-LunarLander-rc/data +20 -20
- thicc-ppo-LunarLander-rc/policy.optimizer.pth +1 -1
- thicc-ppo-LunarLander-rc/policy.pth +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 220.05 +/- 11.53
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9536cee50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9536ceee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9536cef70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9536d3040>", "_build": "<function ActorCriticPolicy._build at 0x7ff9536d30d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9536d3160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9536d31f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9536d3280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9536d3310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9536d33a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9536d3430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff9536d01b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVagAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZRLIGF1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651724159.19443, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAE24HL0TYq8/IDpGv7CLwL6Divo8djG/PQAAAAAAAAAA1SjYvtEDBD8DyHe/mYOIvwpeWz++LaY+AAAAAAAAAADm5VQ+rkFXPxPR/z6py42/NN5EvVup7r0AAAAAAAAAAAABH70RfLA/dcPcvs6bh77JSmE9SLnEPQAAAAAAAAAABghLvtpiqD9ueB+/3VTbvu/4cT5wZDU+AAAAAAAAAAD6LRw+qBykPwp/Dj/5A66+uT9ovaUcar0AAAAAAAAAALN+aT5h6xU+6Pq+Puw/rb+pUzO9g0rQvQAAAAAAAAAA5fARP2TX/j3wz3s/ySa3vzB0d7+tF8C+AACAPwAAAACaJbO8wP61Pzqe5b5gUDI975f7PJxQET4AAAAAAAAAAIALHT1ax7s/br1KPqVUCj2YTk46vlCQPQAAAAAAAAAAzSLmvGKNuD/yZm++nGLQvGeg4z2I6lQ+AAAAAAAAAADmXdQ+XHO0P8u8Xj87OJ++zsygvgfjKr0AAAAAAAAAAGMGE7/MXrU/Johov0uQEL/z54M+4TUsvQAAAAAAAAAAADtQPSZBjj+7yFc+nCULv1piHb5KRsA9AAAAAAAAAAANEoa9AYOaPzIXoLz0FRu/YyL3vq5wsL4AAAAAAAAAADPUubzHM6w/34+SviQVtL5Fsg09Pgi0PQAAAAAAAAAA7RM9PooqID9KCNE+A/ORv/KbWr7Zwyq9AAAAAAAAAABmnjS8ONy1P/35D7/ML1M+La9oPPuyID4AAAAAAAAAAIAHA76nfH8+8UccvhIQr7+pCpK80q/yvQAAAAAAAAAAQzCFvv8Vjz/vYA6/tBE4v25/Br1FBSI9AAAAAAAAAAAzd947Bw2zP+IJMD9VgQm/xMcAvG6AH74AAAAAAAAAAAAnJL5W7Ik/1cG9vo57TL/iMyc+NRnNPQAAAAAAAAAAwCqCPWzBgz+eHaI+3UFsvw1zgb718KO+AAAAAAAAAACaGeq7VpprP6F4TDwsh1S/3pI+PROUar4AAAAAAAAAABaCAj9TUjo/7guOP9/dg781BIK/gOFXvgAAAAAAAAAAAPShPERRiT+oAPY997xVv0a2Wb70uYa+AAAAAAAAAAB6XEI+yvemP/1jFz8qjs++cOIBvhI2kr0AAAAAAAAAAOa/VL2cANE+lgrWvbNgnb+jpYY+ngwvPQAAAAAAAAAAgC1uva78oT/Lth++wo4yv+eAoT4tE989AAAAAAAAAAC2nRW/NJlyP4ZrYb+TukW/LOehPIMoMr4AAAAAAAAAACZ9CD4/kmg/RFWiPpDPaL8bMga+SuzDPAAAAAAAAAAAmmkcPMLFpj+m+JQ9csr3vjbNAT12aw09AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUTHO34TCX8CUhpRSlIwBbJRLR4wBdJRHQDrQOVgQYk51fZQoaAZoCWgPQwiwV1hwP29WwJSGlFKUaBVLfmgWR0A60RtP557gdX2UKGgGaAloD0MIc/T4vU2iWMCUhpRSlGgVS2toFkdAOtVOO801qHV9lChoBmgJaA9DCL2mBwWlE13AlIaUUpRoFUtbaBZHQDraMOwxFiN1fZQoaAZoCWgPQwgzpIri1bNnwJSGlFKUaBVLWGgWR0A638lHBk7PdX2UKGgGaAloD0MIgo5WtaSSX8CUhpRSlGgVS05oFkdAOuXKwIMSb3V9lChoBmgJaA9DCJljeVe94WTAlIaUUpRoFUtBaBZHQDrlSuQp4KR1fZQoaAZoCWgPQwhhbvdyn1xewJSGlFKUaBVLW2gWR0A6592ovSMMdX2UKGgGaAloD0MIBkZe1oRYcMCUhpRSlGgVS4JoFkdAOulVghKUV3V9lChoBmgJaA9DCB9kWTCxGHLAlIaUUpRoFUtPaBZHQDrzZOBUaQ51fZQoaAZoCWgPQwibyqKwi0dgwJSGlFKUaBVLQGgWR0A68yXD3ueCdX2UKGgGaAloD0MIvcRYpl+XW8CUhpRSlGgVS2VoFkdAOvLwKBun/HV9lChoBmgJaA9DCArYDkZsEmPAlIaUUpRoFUs7aBZHQDry4e9zwMJ1fZQoaAZoCWgPQwg9C0J5Hzs8wJSGlFKUaBVLhmgWR0A69Mn7YTTOdX2UKGgGaAloD0MIieqtgW2mesCUhpRSlGgVS1doFkdAOwKgh8pkPXV9lChoBmgJaA9DCFTm5htRl2nAlIaUUpRoFUtbaBZHQDsCVPepGWl1fZQoaAZoCWgPQwhdT3RdeKBmwJSGlFKUaBVLWGgWR0A7BAqNIbwSdX2UKGgGaAloD0MI6C/0iNFsXcCUhpRSlGgVS2BoFkdAOwQdKdxyXHV9lChoBmgJaA9DCN+JWS+Gh17AlIaUUpRoFUtDaBZHQDsGIP9UCJZ1fZQoaAZoCWgPQwhLBRVVv/FXwJSGlFKUaBVLQWgWR0A7Cd3jdYW+dX2UKGgGaAloD0MINZcbDPV6YMCUhpRSlGgVS2hoFkdAOwjWCmMwUXV9lChoBmgJaA9DCO7rwDmjR33AlIaUUpRoFUtbaBZHQDsWY8dPtUp1fZQoaAZoCWgPQwgi4Xt/A5NvwJSGlFKUaBVLUmgWR0A7HfkWAPNFdX2UKGgGaAloD0MIAizy64dTVMCUhpRSlGgVS21oFkdAOx4OUdJaq3V9lChoBmgJaA9DCGed8X1xOmTAlIaUUpRoFUtAaBZHQDsdgtvn8sN1fZQoaAZoCWgPQwhseeV6W/BkwJSGlFKUaBVLgGgWR0A7IpkPMB6sdX2UKGgGaAloD0MIAwgfSrSEPECUhpRSlGgVS4doFkdAOyVawD/2kHV9lChoBmgJaA9DCHo4gem0Y1fAlIaUUpRoFUteaBZHQDsl+tr9ETh1fZQoaAZoCWgPQwjTEiujUQlwwJSGlFKUaBVLbGgWR0A7KVghKUV0dX2UKGgGaAloD0MI1eqrqwJnZMCUhpRSlGgVS01oFkdAOyyZnctXgnV9lChoBmgJaA9DCCe8BKc+xnLAlIaUUpRoFUtcaBZHQDs1sBQvYe11fZQoaAZoCWgPQwjrc7UV+z9awJSGlFKUaBVLQGgWR0A7N3IuGsV+dX2UKGgGaAloD0MIejarPlfXV8CUhpRSlGgVSz5oFkdAO0CHh0hePnV9lChoBmgJaA9DCIqw4emVTV/AlIaUUpRoFUtHaBZHQDtMyRB/qgR1fZQoaAZoCWgPQwgjMUENH2t1wJSGlFKUaBVLYGgWR0A7TEWIoE0SdX2UKGgGaAloD0MIEJTb9v0we8CUhpRSlGgVS1toFkdAO07K/20zCXV9lChoBmgJaA9DCIzZklWRVGvAlIaUUpRoFUt+aBZHQDtRStNi6QN1fZQoaAZoCWgPQwjJO4cyVF9XwJSGlFKUaBVLQGgWR0A7Uw4KhL5AdX2UKGgGaAloD0MIT64pkNkHUsCUhpRSlGgVS0JoFkdAO1bSeAd4mnV9lChoBmgJaA9DCF6EKcplN3XAlIaUUpRoFUtZaBZHQDtW0kWykbh1fZQoaAZoCWgPQwjp81FGXHBfwJSGlFKUaBVLVmgWR0A7VtCzC1qndX2UKGgGaAloD0MI8pTVdD3cUMCUhpRSlGgVS0BoFkdAO1piAlOXV3V9lChoBmgJaA9DCL/zixL0gFfAlIaUUpRoFUtIaBZHQDtgsTWXkYJ1fZQoaAZoCWgPQwiJKCZvgHkoQJSGlFKUaBVLVmgWR0A7YBSk0rLAdX2UKGgGaAloD0MIO420VF43YsCUhpRSlGgVS3JoFkdAO2MTFl05l3V9lChoBmgJaA9DCKlKW1zjzmHAlIaUUpRoFUtRaBZHQDtobS7Xg+B1fZQoaAZoCWgPQwgw8x38RHdnwJSGlFKUaBVLUWgWR0A7aiXIEKVqdX2UKGgGaAloD0MIjpJX5xjRV8CUhpRSlGgVSzxoFkdAO24//vOQhnV9lChoBmgJaA9DCD0racV3HXLAlIaUUpRoFUtiaBZHQDtvGPxQSBd1fZQoaAZoCWgPQwhK7xtfe/5PwJSGlFKUaBVLY2gWR0A7ckCmuTzNdX2UKGgGaAloD0MI/yQ+d4IbV8CUhpRSlGgVS0FoFkdAO3b3j+717XV9lChoBmgJaA9DCCbHndJB1G3AlIaUUpRoFUt3aBZHQDt4LWqcVgx1fZQoaAZoCWgPQwjiqx3FOU5YwJSGlFKUaBVLgGgWR0A7eX/HYHxCdX2UKGgGaAloD0MIsTTwoxq5acCUhpRSlGgVS1FoFkdAO3xqbjLjgnV9lChoBmgJaA9DCE5HADeLqmXAlIaUUpRoFUt1aBZHQDt8580DU3J1fZQoaAZoCWgPQwgIdvwXCKlfwJSGlFKUaBVLVGgWR0A7hona37UHdX2UKGgGaAloD0MIvLN224XLXsCUhpRSlGgVS1xoFkdAO5DAvcrRSnV9lChoBmgJaA9DCOdQhqqYDmjAlIaUUpRoFUtTaBZHQDuUlme18b91fZQoaAZoCWgPQwgfvkwUocJnwJSGlFKUaBVLX2gWR0A7k/YraufVdX2UKGgGaAloD0MIHqM883Jye8CUhpRSlGgVS05oFkdAO5g0sOG0u3V9lChoBmgJaA9DCCqRRC+jolnAlIaUUpRoFUs6aBZHQDuaRuCPIXF1fZQoaAZoCWgPQwj5hOy8DRNmwJSGlFKUaBVLXmgWR0A7nwYtQKrrdX2UKGgGaAloD0MIVgxXBwBLcMCUhpRSlGgVS3loFkdAO6C00FbFCXV9lChoBmgJaA9DCOQTsvM2alfAlIaUUpRoFUtEaBZHQDuk/IKc/dJ1fZQoaAZoCWgPQwjU1LK1/opzwJSGlFKUaBVLYGgWR0A7sNz8xbjcdX2UKGgGaAloD0MIRX9o5sk5VcCUhpRSlGgVS0doFkdAO7A31jAi3XV9lChoBmgJaA9DCH4dOGdExFrAlIaUUpRoFUtMaBZHQDuzSApazNV1fZQoaAZoCWgPQwjbGDvhpWJowJSGlFKUaBVLTWgWR0A7u83Mpw0gdX2UKGgGaAloD0MIuf3yyYphbMCUhpRSlGgVS1loFkdAO73ck+otMHV9lChoBmgJaA9DCL6iW6/pUlvAlIaUUpRoFUtRaBZHQDu90U47zTZ1fZQoaAZoCWgPQwj/XDRkPO9XwJSGlFKUaBVLRmgWR0A7wZha1TisdX2UKGgGaAloD0MI9Wc/UkQJYMCUhpRSlGgVS1ZoFkdAO8TGT9sJpnV9lChoBmgJaA9DCDYebLHbOFDAlIaUUpRoFUtpaBZHQDvHhDPWxyJ1fZQoaAZoCWgPQwhyameY2gtgwJSGlFKUaBVLRWgWR0A7yffXPJJYdX2UKGgGaAloD0MIcOzZc5kbWcCUhpRSlGgVS4FoFkdAO8lkQPI4l3V9lChoBmgJaA9DCMDLDBtlRl/AlIaUUpRoFUtWaBZHQDvN3fQ8fV91fZQoaAZoCWgPQwici7/tySZ5wJSGlFKUaBVLWmgWR0A71Tz/ZM+NdX2UKGgGaAloD0MIdSLBVDOlUcCUhpRSlGgVS01oFkdAO9i8e0XxfHV9lChoBmgJaA9DCJgvL8A+clTAlIaUUpRoFUtlaBZHQDvfhZQpF1B1fZQoaAZoCWgPQwgYCW05lxhgwJSGlFKUaBVLX2gWR0A75hPTG5tndX2UKGgGaAloD0MI5+CZ0KQTccCUhpRSlGgVS2JoFkdAO+YAOrhisnV9lChoBmgJaA9DCLYODvbmQnfAlIaUUpRoFUtTaBZHQDvl9H+ZPVN1fZQoaAZoCWgPQwjfqBWm7xhawJSGlFKUaBVLPmgWR0A7536AOJ+EdX2UKGgGaAloD0MISnuDL4ytd8CUhpRSlGgVS1poFkdAO+tE5Qxes3V9lChoBmgJaA9DCEtcx7ji4l/AlIaUUpRoFUt+aBZHQDvs7nxJ/Xp1fZQoaAZoCWgPQwht/8pKk09bwJSGlFKUaBVLQ2gWR0A773bEgntwdX2UKGgGaAloD0MIJSTSNv40csCUhpRSlGgVS2FoFkdAO/bb1yvLYHV9lChoBmgJaA9DCN0lcVZExm7AlIaUUpRoFUtOaBZHQDv3S7Xg9/11fZQoaAZoCWgPQwiCGylbJLJewJSGlFKUaBVLPmgWR0A7/238XN1RdX2UKGgGaAloD0MIVYodjUMOXsCUhpRSlGgVS3VoFkdAPAKWTot+TnV9lChoBmgJaA9DCOqxLQPOshdAlIaUUpRoFUtLaBZHQDwEAR02cax1fZQoaAZoCWgPQwiVDABVXNVqwJSGlFKUaBVLZ2gWR0A8CU9ZA6dUdX2UKGgGaAloD0MI/isrTco1YMCUhpRSlGgVS1doFkdAPA7X6InBtXV9lChoBmgJaA9DCIJ1HD9UdFzAlIaUUpRoFUs6aBZHQDwSDrZ8KHB1fZQoaAZoCWgPQwj1uG+1zk1ywJSGlFKUaBVLX2gWR0A8Fy0KJEYwdX2UKGgGaAloD0MIHJlH/mD/Y8CUhpRSlGgVS35oFkdAPBbWy1NQCXV9lChoBmgJaA9DCFD/WfPjplfAlIaUUpRoFUs/aBZHQDwcclw97nh1fZQoaAZoCWgPQwi0jqomiPdiwJSGlFKUaBVLbmgWR0A8HFa0QbuMdX2UKGgGaAloD0MImn0eozy0YcCUhpRSlGgVS1ZoFkdAPB9/nW8RMHV9lChoBmgJaA9DCBUZHZCElFbAlIaUUpRoFUtKaBZHQDwg+aBqbjN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3db79dae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3db79daee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3db79daf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3db79de040>", "_build": "<function ActorCriticPolicy._build at 0x7f3db79de0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3db79de160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3db79de1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3db79de280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3db79de310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3db79de3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3db79de430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3db79dc1b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVagAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZRLIGF1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651724292.4656534, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAFauiL7rPr8/qickvxH4wL7y916+MgGTvgAAAAAAAAAAMBeEPvAC5z5zas48U/PSvnEeuD2Ra6W8AAAAAAAAAAAAcfq8ieMcPnXhTb4AC2S+8f+LvYp6zToAAAAAAAAAAAAzjDyk4BQ6dxIhu97WlLY3LKI7rQZFOgAAgD8AAIA/TdLgPSlkaro+jeS7Da1AtsFBhDti37E1AACAPwAAgD9Dm+A+SsDaPiKh0b2K8cO+hiJpPo2Lhb0AAAAAAAAAAGZqHjzhsJq6fQ/uO8niAr2eMLw6bfzkPQAAgD8AAAAAAGwmPHtIl7rUB707XzQeNxaqCzteGQ02AACAPwAAgD9mJqM5XLsvuk6sPbvWUuu2SGRquniCWjoAAIA/AACAP5pwUz1c6yO6VUimu8cgBLcxpce6Kya/OgAAgD8AAIA/mpgJPRyYjD4SZ3o+qvSAvrRZSD0D9l08AAAAAAAAAAAa4jY9eyyWOVK1UzxRRRK8WyoWPJyvQz0AAAAAAAAAAJr6qz1IAeC4jGw4vBrxZj2nm+I78WC/PQAAgD8AAIA/MwesO8NlY7pSlEQ7a5BAOO7ZcDv7z+y5AACAPwAAgD8mO789pAh6OrwWSzyfxgs8V4D4Op2d9bwAAIA/AAAAALNSUT0YTZw+LpE3PL0jcL7wcvQ79Oi4vQAAAAAAAAAAM1TiPAoDfzopXwy8E1JaPWxYDrzdwJO9AACAPwAAAACA3vc9PZpJOmt9Fb1Q6gu7a18/PCN96LsAAIA/AACAPwAwCD2r8T0/etbLPfbWhb60wzQ92DwZvQAAAAAAAAAAmlVwPqkmRrzhVrs87myuO1cpqb3Fm4M8AACAPwAAgD8askE9FCbWOQZKMLzzfsG70glDu9MC4TwAAAAAAAAAAOZB8b1S6Oi5rmHuPOYjpLrLuTO7nZKQOwAAgD8AAIA/mvuQPI8yVrq8PiU7u8sdueJvEjsC0eO5AACAPwAAgD+aPCk9e8iYus62nTuru7q1TqMsuw5/tLoAAIA/AACAP83+nT2F6/i5ZoSEPI0qe7jXC3K7QFWAtwAAgD8AAIA/1yQvv25ojb74FuK5PWXPvF0/2bwea7e9AAAAAAAAgD960Dk+wvduP4qQhT7tf72+WzUlPoJqhz0AAAAAAAAAAM2JBT32pFK6uHggO4TCybcYfzi5SIk1ugAAgD8AAIA/s6kFPUjNkrpddxg8bhEiNjkTEbtBhxA1AACAPwAAgD8AU8s8H8XPOEN9xLoj9n+2FoSaO3pW7jkAAIA/AACAP2YWaLsTFLM/uJTqvTz6Tr4yt9c3dYdnvAAAAAAAAAAAmi8bvMP1PLgyLlI8a71CvIDOhDuSXqU7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIswkwLH8OKkCUhpRSlIwBbJRLo4wBdJRHQHJOun62v0R1fZQoaAZoCWgPQwjzr+WV66tdQJSGlFKUaBVN6ANoFkdAcl6ZYgaFVXV9lChoBmgJaA9DCM3oR8MpKUNAlIaUUpRoFU3oA2gWR0ByZd5Rjz7NdX2UKGgGaAloD0MI2ZWWkXqLNMCUhpRSlGgVS3RoFkdAcm5rtVrAQHV9lChoBmgJaA9DCOkrSDMWQ09AlIaUUpRoFU3oA2gWR0Bydh5Z8rqddX2UKGgGaAloD0MIO8WqQZjzV0CUhpRSlGgVTegDaBZHQHJ2gTmGM4t1fZQoaAZoCWgPQwg57Sk5J7YnwJSGlFKUaBVLz2gWR0ByicL9deIEdX2UKGgGaAloD0MI2SQ/4ldOV0CUhpRSlGgVTegDaBZHQHKPcRxtHhF1fZQoaAZoCWgPQwgLCRhd3tw+QJSGlFKUaBVN6ANoFkdAcpDeokzGgnV9lChoBmgJaA9DCEmdgCbC8khAlIaUUpRoFUvSaBZHQHKSD63y7PJ1fZQoaAZoCWgPQwj28GWiCLdBQJSGlFKUaBVL1mgWR0BynNTR6WxAdX2UKGgGaAloD0MIHLEWnwLAQkCUhpRSlGgVS51oFkdAcp++fywwCnV9lChoBmgJaA9DCKfmcoOhujlAlIaUUpRoFUt6aBZHQHKoUleF+NN1fZQoaAZoCWgPQwj5EFSNXrE2QJSGlFKUaBVLpmgWR0ByqraIvalDdX2UKGgGaAloD0MIObh0zHnqMECUhpRSlGgVS5RoFkdActQqqOtGNXV9lChoBmgJaA9DCG4w1GGFlzNAlIaUUpRoFU3oA2gWR0By1Gm2sq8UdX2UKGgGaAloD0MI1jVaDvTkMECUhpRSlGgVS61oFkdAct5+wC8vmHV9lChoBmgJaA9DCJWcE3toim7AlIaUUpRoFU1PAWgWR0By4BSNwR5DdX2UKGgGaAloD0MI6jwq/q+ecMCUhpRSlGgVTe0BaBZHQHLoke6qbSZ1fZQoaAZoCWgPQwikU1c+yyszQJSGlFKUaBVLjmgWR0By7YkZ75VPdX2UKGgGaAloD0MIQUZAhSOoF8CUhpRSlGgVS/xoFkdAcxSRradtmHV9lChoBmgJaA9DCGPQCaGDEklAlIaUUpRoFU3oA2gWR0BzFiHnEETydX2UKGgGaAloD0MIYOrnTUV0TUCUhpRSlGgVTegDaBZHQHMfHQ2MsH11fZQoaAZoCWgPQwhMGqN1VFhTQJSGlFKUaBVN6ANoFkdAczD5vLowEnV9lChoBmgJaA9DCOjdWFAYTCtAlIaUUpRoFUvMaBZHQHNbI46wMYx1fZQoaAZoCWgPQwgEj2/vGkBJQJSGlFKUaBVN6ANoFkdAc24bF0gbInV9lChoBmgJaA9DCC7iOzHrMU9AlIaUUpRoFU3oA2gWR0BzcKdNFjNIdX2UKGgGaAloD0MIPzkKEAV4W0CUhpRSlGgVTegDaBZHQHNxaY7aIvd1fZQoaAZoCWgPQwgZOQt72o9KQJSGlFKUaBVN6ANoFkdAc3Sl6qsEJXV9lChoBmgJaA9DCNHrT+Jzs0xAlIaUUpRoFU3oA2gWR0BzevyRSxZ/dX2UKGgGaAloD0MIjbeVXpuMUUCUhpRSlGgVTegDaBZHQHN7KODJ2dN1fZQoaAZoCWgPQwguH0lJDztPQJSGlFKUaBVN6ANoFkdAc4bzEJjUeHV9lChoBmgJaA9DCDMZjuczwATAlIaUUpRoFU3oA2gWR0BzhwHiWE9MdX2UKGgGaAloD0MIMxgjEoVfX0CUhpRSlGgVTegDaBZHQHOSr655JK91fZQoaAZoCWgPQwgSFhVxOsndP5SGlFKUaBVL9GgWR0BzsJIOH310dX2UKGgGaAloD0MIWn9LAP7wV0CUhpRSlGgVTegDaBZHQHPM9wBHTZx1fZQoaAZoCWgPQwid1m1Q+y0dwJSGlFKUaBVL2WgWR0Bz0I0FbFCLdX2UKGgGaAloD0MINKK0N/i1WECUhpRSlGgVTegDaBZHQHPXYlIEr5J1fZQoaAZoCWgPQwhffxKfO/kuQJSGlFKUaBVLuWgWR0Bz2EImgJ1JdX2UKGgGaAloD0MIZyjueJNfQECUhpRSlGgVTegDaBZHQHPpY8EFGG51fZQoaAZoCWgPQwgo1T4djxnQv5SGlFKUaBVLj2gWR0Bz84+GGmDUdX2UKGgGaAloD0MIb4EExY/BIsCUhpRSlGgVTSkBaBZHQHP/wzxgAp91fZQoaAZoCWgPQwjLS/4nf6dTQJSGlFKUaBVN6ANoFkdAdBJR5C4SYnV9lChoBmgJaA9DCIF2hxQD5CxAlIaUUpRoFUuSaBZHQHQd3GwRoRJ1fZQoaAZoCWgPQwgoDqDf99FWQJSGlFKUaBVN6ANoFkdAdCKATqSowXV9lChoBmgJaA9DCLiumBHeg1pAlIaUUpRoFU3oA2gWR0B0I8nRb8m8dX2UKGgGaAloD0MICoDxDBryUUCUhpRSlGgVTegDaBZHQHQ0+KKpDNR1fZQoaAZoCWgPQwhjDRe5pw88QJSGlFKUaBVN6ANoFkdAdGDIBzV+Z3V9lChoBmgJaA9DCLhYUYNpZVJAlIaUUpRoFU3oA2gWR0B0alvze40/dX2UKGgGaAloD0MIAKjixi06SECUhpRSlGgVTegDaBZHQHSB8QNCqp91fZQoaAZoCWgPQwiQh767lfk6QJSGlFKUaBVN6ANoFkdAdIjQmu1WsHV9lChoBmgJaA9DCMLc7uU+OUNAlIaUUpRoFUvWaBZHQHSL7z5GjKx1fZQoaAZoCWgPQwh1V3bBYD1gQJSGlFKUaBVN6ANoFkdAdJzdlNDc/XV9lChoBmgJaA9DCGd79Ib7E2BAlIaUUpRoFU3oA2gWR0B0py72+PBBdX2UKGgGaAloD0MIDM7g7xe0VkCUhpRSlGgVTegDaBZHQHTYUF8ohIR1fZQoaAZoCWgPQwid2hmmttxQQJSGlFKUaBVN6ANoFkdAdOPwZflZHXV9lChoBmgJaA9DCLBx/bs+F1RAlIaUUpRoFU3oA2gWR0B05b9uP3i8dX2UKGgGaAloD0MIXtkFg2vRU0CUhpRSlGgVTegDaBZHQHTuup84Pwx1fZQoaAZoCWgPQwiH30237FRBQJSGlFKUaBVN6ANoFkdAdPQVlwtJ4HV9lChoBmgJaA9DCIc2ABsQqllAlIaUUpRoFU3oA2gWR0B1G2uW8h9tdX2UKGgGaAloD0MIgxYSMLpMPUCUhpRSlGgVTegDaBZHQHUc0+s5n151fZQoaAZoCWgPQwg900uMZdIxwJSGlFKUaBVNHQFoFkdAdR5HnU2DQXV9lChoBmgJaA9DCL6lnC/2MlhAlIaUUpRoFU3oA2gWR0B1N0HVwxWUdX2UKGgGaAloD0MIarx0k5i5YECUhpRSlGgVTegDaBZHQHU/fRiPQv91fZQoaAZoCWgPQwjbw14oYFtQQJSGlFKUaBVN6ANoFkdAdXF/xDst03V9lChoBmgJaA9DCD83NGWnIFZAlIaUUpRoFU3oA2gWR0B1c/kcS5AhdX2UKGgGaAloD0MIHXIz3IBOUkCUhpRSlGgVTegDaBZHQHV3weJYT0x1fZQoaAZoCWgPQwgd6KG2DV1UQJSGlFKUaBVN6ANoFkdAdX4dnTRYzXV9lChoBmgJaA9DCKNAn8iT+E5AlIaUUpRoFU3oA2gWR0B1ilb/wRXfdX2UKGgGaAloD0MIN8R4zSs1Y8CUhpRSlGgVTT8BaBZHQHWU3CfpUxV1fZQoaAZoCWgPQwiyKy0j9VhXQJSGlFKUaBVN6ANoFkdAdZb/BWPtD3V9lChoBmgJaA9DCODXSBKEK9u/lIaUUpRoFUuUaBZHQHW5U7r9l3B1fZQoaAZoCWgPQwj9Ma1NY3FUQJSGlFKUaBVN6ANoFkdAddPvOQhfSnV9lChoBmgJaA9DCHAlOzYCNFhAlIaUUpRoFU3oA2gWR0B118gdOqNqdX2UKGgGaAloD0MIdNTRcTUAV0CUhpRSlGgVTegDaBZHQHXeoR28qWl1fZQoaAZoCWgPQwgAcsKE0dhZQJSGlFKUaBVN6ANoFkdAdfDHn2ZiNXV9lChoBmgJaA9DCC+KHvgYpFVAlIaUUpRoFU3oA2gWR0B1+0zSCvovdX2UKGgGaAloD0MISbn7HB+LU0CUhpRSlGgVTegDaBZHQHYHZbt7a7F1fZQoaAZoCWgPQwixijcyj/lWQJSGlFKUaBVN6ANoFkdAdhk/dqL0jHV9lChoBmgJaA9DCAt6bwwB4FRAlIaUUpRoFU3oA2gWR0B2JF3/xUeddX2UKGgGaAloD0MICACOPftpYkCUhpRSlGgVTegDaBZHQHYoivPkaMt1fZQoaAZoCWgPQwgpJJnVO0BbQJSGlFKUaBVN6ANoFkdAdjpJFLFn7HV9lChoBmgJaA9DCOfEHtrHqibAlIaUUpRoFUuTaBZHQHY+vt+kP+Z1fZQoaAZoCWgPQwjOxHQhVtZfQJSGlFKUaBVN6ANoFkdAdmTDHOryUnV9lChoBmgJaA9DCLfvUX+9XVtAlIaUUpRoFU3oA2gWR0B2beWX1J18dX2UKGgGaAloD0MIfV2G/3TnTECUhpRSlGgVTegDaBZHQHaDwmReTmp1fZQoaAZoCWgPQwj60tufi9hdQJSGlFKUaBVN6ANoFkdAdookELYwqXV9lChoBmgJaA9DCDJ3LSEfR1NAlIaUUpRoFU3oA2gWR0B2nPzH0btJdX2UKGgGaAloD0MIXoWUn1TXVkCUhpRSlGgVTegDaBZHQHamg3HaN+91fZQoaAZoCWgPQwhzLO+qBxQ9QJSGlFKUaBVLfmgWR0B2xgg1WKdhdX2UKGgGaAloD0MIEF1Q3zLjU0CUhpRSlGgVTegDaBZHQHbgcEFGG211fZQoaAZoCWgPQwhQHEC/71FJQJSGlFKUaBVN6ANoFkdAduItsvZh8nV9lChoBmgJaA9DCKGCwwsiCWFAlIaUUpRoFU3oA2gWR0B261+d9UjtdX2UKGgGaAloD0MIjbYqiWw8YECUhpRSlGgVTegDaBZHQHbw11Oj7AN1fZQoaAZoCWgPQwhzhXe5CI5iQJSGlFKUaBVN6ANoFkdAdxdHSF49o3V9lChoBmgJaA9DCOWbbW5MZ1ZAlIaUUpRoFU3oA2gWR0B3GLBP9DQadX2UKGgGaAloD0MIggNauoLNW0CUhpRSlGgVTegDaBZHQHcaFH8TBZZ1fZQoaAZoCWgPQwjkSdI1k9ddQJSGlFKUaBVN6ANoFkdAdzHJqqOtGXV9lChoBmgJaA9DCIdREDy+i1hAlIaUUpRoFU3oA2gWR0B3OY0zj3mFdX2UKGgGaAloD0MIGof6XdgpWUCUhpRSlGgVTegDaBZHQHdKkth/iHZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad0fe65a85d407c36b217d3b7280cf1ca5ab140dc6611e69ccb54a85a902676f
|
3 |
+
size 194209
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 220.0504217574468, "std_reward": 11.526505370053448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T12:24:48.682599"}
|
thicc-ppo-LunarLander-rc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dedeb8b34faf4616fe8c5816ec1950a7bdc4df400516017cbb49f84d8f7b253e
|
3 |
+
size 244307
|
thicc-ppo-LunarLander-rc/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
@@ -59,12 +59,12 @@
|
|
59 |
"_np_random": null
|
60 |
},
|
61 |
"n_envs": 32,
|
62 |
-
"num_timesteps":
|
63 |
-
"_total_timesteps":
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.0003,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,26 +73,26 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"_last_original_obs": null,
|
83 |
"_episode_num": 0,
|
84 |
"use_sde": false,
|
85 |
"sde_sample_freq": -1,
|
86 |
-
"_current_progress_remaining": -0.
|
87 |
"ep_info_buffer": {
|
88 |
":type:": "<class 'collections.deque'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"ep_success_buffer": {
|
92 |
":type:": "<class 'collections.deque'>",
|
93 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
94 |
},
|
95 |
-
"_n_updates":
|
96 |
"n_steps": 1024,
|
97 |
"gamma": 0.999,
|
98 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3db79dae50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3db79daee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3db79daf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3db79de040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3db79de0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3db79de160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3db79de1f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3db79de280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3db79de310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3db79de3a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3db79de430>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3db79dc1b0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
|
|
59 |
"_np_random": null
|
60 |
},
|
61 |
"n_envs": 32,
|
62 |
+
"num_timesteps": 1015808,
|
63 |
+
"_total_timesteps": 1000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1651724292.4656534,
|
68 |
"learning_rate": 0.0003,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAFauiL7rPr8/qickvxH4wL7y916+MgGTvgAAAAAAAAAAMBeEPvAC5z5zas48U/PSvnEeuD2Ra6W8AAAAAAAAAAAAcfq8ieMcPnXhTb4AC2S+8f+LvYp6zToAAAAAAAAAAAAzjDyk4BQ6dxIhu97WlLY3LKI7rQZFOgAAgD8AAIA/TdLgPSlkaro+jeS7Da1AtsFBhDti37E1AACAPwAAgD9Dm+A+SsDaPiKh0b2K8cO+hiJpPo2Lhb0AAAAAAAAAAGZqHjzhsJq6fQ/uO8niAr2eMLw6bfzkPQAAgD8AAAAAAGwmPHtIl7rUB707XzQeNxaqCzteGQ02AACAPwAAgD9mJqM5XLsvuk6sPbvWUuu2SGRquniCWjoAAIA/AACAP5pwUz1c6yO6VUimu8cgBLcxpce6Kya/OgAAgD8AAIA/mpgJPRyYjD4SZ3o+qvSAvrRZSD0D9l08AAAAAAAAAAAa4jY9eyyWOVK1UzxRRRK8WyoWPJyvQz0AAAAAAAAAAJr6qz1IAeC4jGw4vBrxZj2nm+I78WC/PQAAgD8AAIA/MwesO8NlY7pSlEQ7a5BAOO7ZcDv7z+y5AACAPwAAgD8mO789pAh6OrwWSzyfxgs8V4D4Op2d9bwAAIA/AAAAALNSUT0YTZw+LpE3PL0jcL7wcvQ79Oi4vQAAAAAAAAAAM1TiPAoDfzopXwy8E1JaPWxYDrzdwJO9AACAPwAAAACA3vc9PZpJOmt9Fb1Q6gu7a18/PCN96LsAAIA/AACAPwAwCD2r8T0/etbLPfbWhb60wzQ92DwZvQAAAAAAAAAAmlVwPqkmRrzhVrs87myuO1cpqb3Fm4M8AACAPwAAgD8askE9FCbWOQZKMLzzfsG70glDu9MC4TwAAAAAAAAAAOZB8b1S6Oi5rmHuPOYjpLrLuTO7nZKQOwAAgD8AAIA/mvuQPI8yVrq8PiU7u8sdueJvEjsC0eO5AACAPwAAgD+aPCk9e8iYus62nTuru7q1TqMsuw5/tLoAAIA/AACAP83+nT2F6/i5ZoSEPI0qe7jXC3K7QFWAtwAAgD8AAIA/1yQvv25ojb74FuK5PWXPvF0/2bwea7e9AAAAAAAAgD960Dk+wvduP4qQhT7tf72+WzUlPoJqhz0AAAAAAAAAAM2JBT32pFK6uHggO4TCybcYfzi5SIk1ugAAgD8AAIA/s6kFPUjNkrpddxg8bhEiNjkTEbtBhxA1AACAPwAAgD8AU8s8H8XPOEN9xLoj9n+2FoSaO3pW7jkAAIA/AACAP2YWaLsTFLM/uJTqvTz6Tr4yt9c3dYdnvAAAAAAAAAAAmi8bvMP1PLgyLlI8a71CvIDOhDuSXqU7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
81 |
},
|
82 |
"_last_original_obs": null,
|
83 |
"_episode_num": 0,
|
84 |
"use_sde": false,
|
85 |
"sde_sample_freq": -1,
|
86 |
+
"_current_progress_remaining": -0.015808000000000044,
|
87 |
"ep_info_buffer": {
|
88 |
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIswkwLH8OKkCUhpRSlIwBbJRLo4wBdJRHQHJOun62v0R1fZQoaAZoCWgPQwjzr+WV66tdQJSGlFKUaBVN6ANoFkdAcl6ZYgaFVXV9lChoBmgJaA9DCM3oR8MpKUNAlIaUUpRoFU3oA2gWR0ByZd5Rjz7NdX2UKGgGaAloD0MI2ZWWkXqLNMCUhpRSlGgVS3RoFkdAcm5rtVrAQHV9lChoBmgJaA9DCOkrSDMWQ09AlIaUUpRoFU3oA2gWR0Bydh5Z8rqddX2UKGgGaAloD0MIO8WqQZjzV0CUhpRSlGgVTegDaBZHQHJ2gTmGM4t1fZQoaAZoCWgPQwg57Sk5J7YnwJSGlFKUaBVLz2gWR0ByicL9deIEdX2UKGgGaAloD0MI2SQ/4ldOV0CUhpRSlGgVTegDaBZHQHKPcRxtHhF1fZQoaAZoCWgPQwgLCRhd3tw+QJSGlFKUaBVN6ANoFkdAcpDeokzGgnV9lChoBmgJaA9DCEmdgCbC8khAlIaUUpRoFUvSaBZHQHKSD63y7PJ1fZQoaAZoCWgPQwj28GWiCLdBQJSGlFKUaBVL1mgWR0BynNTR6WxAdX2UKGgGaAloD0MIHLEWnwLAQkCUhpRSlGgVS51oFkdAcp++fywwCnV9lChoBmgJaA9DCKfmcoOhujlAlIaUUpRoFUt6aBZHQHKoUleF+NN1fZQoaAZoCWgPQwj5EFSNXrE2QJSGlFKUaBVLpmgWR0ByqraIvalDdX2UKGgGaAloD0MIObh0zHnqMECUhpRSlGgVS5RoFkdActQqqOtGNXV9lChoBmgJaA9DCG4w1GGFlzNAlIaUUpRoFU3oA2gWR0By1Gm2sq8UdX2UKGgGaAloD0MI1jVaDvTkMECUhpRSlGgVS61oFkdAct5+wC8vmHV9lChoBmgJaA9DCJWcE3toim7AlIaUUpRoFU1PAWgWR0By4BSNwR5DdX2UKGgGaAloD0MI6jwq/q+ecMCUhpRSlGgVTe0BaBZHQHLoke6qbSZ1fZQoaAZoCWgPQwikU1c+yyszQJSGlFKUaBVLjmgWR0By7YkZ75VPdX2UKGgGaAloD0MIQUZAhSOoF8CUhpRSlGgVS/xoFkdAcxSRradtmHV9lChoBmgJaA9DCGPQCaGDEklAlIaUUpRoFU3oA2gWR0BzFiHnEETydX2UKGgGaAloD0MIYOrnTUV0TUCUhpRSlGgVTegDaBZHQHMfHQ2MsH11fZQoaAZoCWgPQwhMGqN1VFhTQJSGlFKUaBVN6ANoFkdAczD5vLowEnV9lChoBmgJaA9DCOjdWFAYTCtAlIaUUpRoFUvMaBZHQHNbI46wMYx1fZQoaAZoCWgPQwgEj2/vGkBJQJSGlFKUaBVN6ANoFkdAc24bF0gbInV9lChoBmgJaA9DCC7iOzHrMU9AlIaUUpRoFU3oA2gWR0BzcKdNFjNIdX2UKGgGaAloD0MIPzkKEAV4W0CUhpRSlGgVTegDaBZHQHNxaY7aIvd1fZQoaAZoCWgPQwgZOQt72o9KQJSGlFKUaBVN6ANoFkdAc3Sl6qsEJXV9lChoBmgJaA9DCNHrT+Jzs0xAlIaUUpRoFU3oA2gWR0BzevyRSxZ/dX2UKGgGaAloD0MIjbeVXpuMUUCUhpRSlGgVTegDaBZHQHN7KODJ2dN1fZQoaAZoCWgPQwguH0lJDztPQJSGlFKUaBVN6ANoFkdAc4bzEJjUeHV9lChoBmgJaA9DCDMZjuczwATAlIaUUpRoFU3oA2gWR0BzhwHiWE9MdX2UKGgGaAloD0MIMxgjEoVfX0CUhpRSlGgVTegDaBZHQHOSr655JK91fZQoaAZoCWgPQwgSFhVxOsndP5SGlFKUaBVL9GgWR0BzsJIOH310dX2UKGgGaAloD0MIWn9LAP7wV0CUhpRSlGgVTegDaBZHQHPM9wBHTZx1fZQoaAZoCWgPQwid1m1Q+y0dwJSGlFKUaBVL2WgWR0Bz0I0FbFCLdX2UKGgGaAloD0MINKK0N/i1WECUhpRSlGgVTegDaBZHQHPXYlIEr5J1fZQoaAZoCWgPQwhffxKfO/kuQJSGlFKUaBVLuWgWR0Bz2EImgJ1JdX2UKGgGaAloD0MIZyjueJNfQECUhpRSlGgVTegDaBZHQHPpY8EFGG51fZQoaAZoCWgPQwgo1T4djxnQv5SGlFKUaBVLj2gWR0Bz84+GGmDUdX2UKGgGaAloD0MIb4EExY/BIsCUhpRSlGgVTSkBaBZHQHP/wzxgAp91fZQoaAZoCWgPQwjLS/4nf6dTQJSGlFKUaBVN6ANoFkdAdBJR5C4SYnV9lChoBmgJaA9DCIF2hxQD5CxAlIaUUpRoFUuSaBZHQHQd3GwRoRJ1fZQoaAZoCWgPQwgoDqDf99FWQJSGlFKUaBVN6ANoFkdAdCKATqSowXV9lChoBmgJaA9DCLiumBHeg1pAlIaUUpRoFU3oA2gWR0B0I8nRb8m8dX2UKGgGaAloD0MICoDxDBryUUCUhpRSlGgVTegDaBZHQHQ0+KKpDNR1fZQoaAZoCWgPQwhjDRe5pw88QJSGlFKUaBVN6ANoFkdAdGDIBzV+Z3V9lChoBmgJaA9DCLhYUYNpZVJAlIaUUpRoFU3oA2gWR0B0alvze40/dX2UKGgGaAloD0MIAKjixi06SECUhpRSlGgVTegDaBZHQHSB8QNCqp91fZQoaAZoCWgPQwiQh767lfk6QJSGlFKUaBVN6ANoFkdAdIjQmu1WsHV9lChoBmgJaA9DCMLc7uU+OUNAlIaUUpRoFUvWaBZHQHSL7z5GjKx1fZQoaAZoCWgPQwh1V3bBYD1gQJSGlFKUaBVN6ANoFkdAdJzdlNDc/XV9lChoBmgJaA9DCGd79Ib7E2BAlIaUUpRoFU3oA2gWR0B0py72+PBBdX2UKGgGaAloD0MIDM7g7xe0VkCUhpRSlGgVTegDaBZHQHTYUF8ohIR1fZQoaAZoCWgPQwid2hmmttxQQJSGlFKUaBVN6ANoFkdAdOPwZflZHXV9lChoBmgJaA9DCLBx/bs+F1RAlIaUUpRoFU3oA2gWR0B05b9uP3i8dX2UKGgGaAloD0MIXtkFg2vRU0CUhpRSlGgVTegDaBZHQHTuup84Pwx1fZQoaAZoCWgPQwiH30237FRBQJSGlFKUaBVN6ANoFkdAdPQVlwtJ4HV9lChoBmgJaA9DCIc2ABsQqllAlIaUUpRoFU3oA2gWR0B1G2uW8h9tdX2UKGgGaAloD0MIgxYSMLpMPUCUhpRSlGgVTegDaBZHQHUc0+s5n151fZQoaAZoCWgPQwg900uMZdIxwJSGlFKUaBVNHQFoFkdAdR5HnU2DQXV9lChoBmgJaA9DCL6lnC/2MlhAlIaUUpRoFU3oA2gWR0B1N0HVwxWUdX2UKGgGaAloD0MIarx0k5i5YECUhpRSlGgVTegDaBZHQHU/fRiPQv91fZQoaAZoCWgPQwjbw14oYFtQQJSGlFKUaBVN6ANoFkdAdXF/xDst03V9lChoBmgJaA9DCD83NGWnIFZAlIaUUpRoFU3oA2gWR0B1c/kcS5AhdX2UKGgGaAloD0MIHXIz3IBOUkCUhpRSlGgVTegDaBZHQHV3weJYT0x1fZQoaAZoCWgPQwgd6KG2DV1UQJSGlFKUaBVN6ANoFkdAdX4dnTRYzXV9lChoBmgJaA9DCKNAn8iT+E5AlIaUUpRoFU3oA2gWR0B1ilb/wRXfdX2UKGgGaAloD0MIN8R4zSs1Y8CUhpRSlGgVTT8BaBZHQHWU3CfpUxV1fZQoaAZoCWgPQwiyKy0j9VhXQJSGlFKUaBVN6ANoFkdAdZb/BWPtD3V9lChoBmgJaA9DCODXSBKEK9u/lIaUUpRoFUuUaBZHQHW5U7r9l3B1fZQoaAZoCWgPQwj9Ma1NY3FUQJSGlFKUaBVN6ANoFkdAddPvOQhfSnV9lChoBmgJaA9DCHAlOzYCNFhAlIaUUpRoFU3oA2gWR0B118gdOqNqdX2UKGgGaAloD0MIdNTRcTUAV0CUhpRSlGgVTegDaBZHQHXeoR28qWl1fZQoaAZoCWgPQwgAcsKE0dhZQJSGlFKUaBVN6ANoFkdAdfDHn2ZiNXV9lChoBmgJaA9DCC+KHvgYpFVAlIaUUpRoFU3oA2gWR0B1+0zSCvovdX2UKGgGaAloD0MISbn7HB+LU0CUhpRSlGgVTegDaBZHQHYHZbt7a7F1fZQoaAZoCWgPQwixijcyj/lWQJSGlFKUaBVN6ANoFkdAdhk/dqL0jHV9lChoBmgJaA9DCAt6bwwB4FRAlIaUUpRoFU3oA2gWR0B2JF3/xUeddX2UKGgGaAloD0MICACOPftpYkCUhpRSlGgVTegDaBZHQHYoivPkaMt1fZQoaAZoCWgPQwgpJJnVO0BbQJSGlFKUaBVN6ANoFkdAdjpJFLFn7HV9lChoBmgJaA9DCOfEHtrHqibAlIaUUpRoFUuTaBZHQHY+vt+kP+Z1fZQoaAZoCWgPQwjOxHQhVtZfQJSGlFKUaBVN6ANoFkdAdmTDHOryUnV9lChoBmgJaA9DCLfvUX+9XVtAlIaUUpRoFU3oA2gWR0B2beWX1J18dX2UKGgGaAloD0MIfV2G/3TnTECUhpRSlGgVTegDaBZHQHaDwmReTmp1fZQoaAZoCWgPQwj60tufi9hdQJSGlFKUaBVN6ANoFkdAdookELYwqXV9lChoBmgJaA9DCDJ3LSEfR1NAlIaUUpRoFU3oA2gWR0B2nPzH0btJdX2UKGgGaAloD0MIXoWUn1TXVkCUhpRSlGgVTegDaBZHQHamg3HaN+91fZQoaAZoCWgPQwhzLO+qBxQ9QJSGlFKUaBVLfmgWR0B2xgg1WKdhdX2UKGgGaAloD0MIEF1Q3zLjU0CUhpRSlGgVTegDaBZHQHbgcEFGG211fZQoaAZoCWgPQwhQHEC/71FJQJSGlFKUaBVN6ANoFkdAduItsvZh8nV9lChoBmgJaA9DCKGCwwsiCWFAlIaUUpRoFU3oA2gWR0B261+d9UjtdX2UKGgGaAloD0MIjbYqiWw8YECUhpRSlGgVTegDaBZHQHbw11Oj7AN1fZQoaAZoCWgPQwhzhXe5CI5iQJSGlFKUaBVN6ANoFkdAdxdHSF49o3V9lChoBmgJaA9DCOWbbW5MZ1ZAlIaUUpRoFU3oA2gWR0B3GLBP9DQadX2UKGgGaAloD0MIggNauoLNW0CUhpRSlGgVTegDaBZHQHcaFH8TBZZ1fZQoaAZoCWgPQwjkSdI1k9ddQJSGlFKUaBVN6ANoFkdAdzHJqqOtGXV9lChoBmgJaA9DCIdREDy+i1hAlIaUUpRoFU3oA2gWR0B3OY0zj3mFdX2UKGgGaAloD0MIGof6XdgpWUCUhpRSlGgVTegDaBZHQHdKkth/iHZ1ZS4="
|
90 |
},
|
91 |
"ep_success_buffer": {
|
92 |
":type:": "<class 'collections.deque'>",
|
93 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
94 |
},
|
95 |
+
"_n_updates": 124,
|
96 |
"n_steps": 1024,
|
97 |
"gamma": 0.999,
|
98 |
"gae_lambda": 0.98,
|
thicc-ppo-LunarLander-rc/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 150609
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cc8c9e274655183df6158c91aefd2fd50e399d484d45d6772c5bdad95e5a3a1
|
3 |
size 150609
|
thicc-ppo-LunarLander-rc/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 76283
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b8df1d067595d2263779a668782df57b89d3f2611cfbc3f0d7a659eb5284efc
|
3 |
size 76283
|