{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5a99998b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5a9999940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5a99999d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5a9999a60>", "_build": "<function ActorCriticPolicy._build at 0x7ff5a9999af0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff5a9999b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5a9999c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff5a9999ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5a9999d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5a9999dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5a9999e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff5a9996750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 20004864, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651745615.1017787, "learning_rate": 0.0003, "tensorboard_log": "./logs/LunarLander-v2-20220505-181331", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANouBr4lx6U/M400v0rgqL5c38I5/58bvgAAAAAAAAAAJlOMPRSXtD7it4A+jSI4v1c2dLs6GKQ+AAAAAAAAAABaYqa9cPiNP/qyHD6PFhS/hOiXvk7NED4AAAAAAAAAAM08JjsKvSO74WqWO6sghjzEQTq86DxoPQAAgD8AAIA/TZ+fvQI7Kz/A4Gg8Lr1ev2mOYb3KcfI8AAAAAAAAAACD8ok+ifdoPpCcMjwu4BK/TXmgPt1neLwAAAAAAAAAADP3JL2UsLu867EmPr+/Kb1yPHY84KpcPgAAgD8AAIA/rdR5PsGCQj5VXoG+MiCNvuKaPD5+2hy+AAAAAAAAAACaJZa8Vh22P+LZAb2EgSm+jNmvvSbVWb4AAAAAAAAAADPrGb0UDpC4iE1qvJCPubzNiGC7E8GivQAAAAAAAIA/TcV6vZKBwjwqEG0+b7OPPR1JST5sno0+AAAAAAAAAAAmSOc9j45Lunqb1zQHxVgysiuzOEbtEbQAAIA/AACAPxN4Ej6f5tu7tfWeO5XmCrqVTEK9ZTngugAAgD8AAIA/DVntPUcULT6bM4S9oJb8vgTgOD49bSI+AAAAAAAAAABmUmy+RwMqvSPanr3u5Qy78CaaPjz2rT0AAAAAAAAAADMykDx4l68/prCaPvIzob43DEK8UxSJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5XOh2fqcECUhpRSlIwBbJRL3YwBdJRHQNVsowcghbJ1fZQoaAZoCWgPQwgmVdtNsMJwQJSGlFKUaBVLzWgWR0DVbKSeMAFQdX2UKGgGaAloD0MI5rLROf/KckCUhpRSlGgVS+VoFkdA1WyuKYRdyHV9lChoBmgJaA9DCCF1O/sK4nFAlIaUUpRoFUvXaBZHQNVssxYV6/t1fZQoaAZoCWgPQwjjGp/J/hk/QJSGlFKUaBVLc2gWR0DVbLmS/0uldX2UKGgGaAloD0MIv7hUpW0ocECUhpRSlGgVS+doFkdA1Wy9VxS5y3V9lChoBmgJaA9DCGGkF7X7s1JAlIaUUpRoFUvwaBZHQNVsvx2fTTh1fZQoaAZoCWgPQwi4yhMIu+dxQJSGlFKUaBVNIwFoFkdA1Wy/y1eBx3V9lChoBmgJaA9DCJVIopcRcnJAlIaUUpRoFUvQaBZHQNVsyuxfOUt1fZQoaAZoCWgPQwigpwGDpNFvQJSGlFKUaBVNGQFoFkdA1WzL/dIoVnV9lChoBmgJaA9DCG5sdqT6VkhAlIaUUpRoFUuCaBZHQNVs3/b0voN1fZQoaAZoCWgPQwiOdtzwu3twQJSGlFKUaBVNSQFoFkdA1WzhIppeu3V9lChoBmgJaA9DCPyO4bHfPXJAlIaUUpRoFUvyaBZHQNVs5xeHBUJ1fZQoaAZoCWgPQwjGia921G5wQJSGlFKUaBVL6mgWR0DVbOiKrJbMdX2UKGgGaAloD0MInrXbLjQ5TkCUhpRSlGgVS7JoFkdA1WzrkgOjI3V9lChoBmgJaA9DCAK8BRJUGXBAlIaUUpRoFUvWaBZHQNVs7VmJ3xF1fZQoaAZoCWgPQwhOfSB557dxQJSGlFKUaBVL5GgWR0DVbPAxwhnrdX2UKGgGaAloD0MIJEVkWEV4ckCUhpRSlGgVS7ZoFkdA1Wz4SqlxfnV9lChoBmgJaA9DCHbexmZHqtA/lIaUUpRoFUu5aBZHQNVs/wpz90l1fZQoaAZoCWgPQwjOM/YlG2VyQJSGlFKUaBVNOgFoFkdA1Wz/FMZgonV9lChoBmgJaA9DCOokW13OKnBAlIaUUpRoFUu+aBZHQNVtDbN8ma91fZQoaAZoCWgPQwhFniRdc/1xQJSGlFKUaBVLy2gWR0DVbRFrLyMDdX2UKGgGaAloD0MIfotOllpgcECUhpRSlGgVTS8BaBZHQNVtLUiliz91fZQoaAZoCWgPQwg5mbhV0HpyQJSGlFKUaBVLwGgWR0DVbS44MnZ1dX2UKGgGaAloD0MIpn7eVCTScECUhpRSlGgVS+toFkdA1W05Kp1ifHV9lChoBmgJaA9DCJ24HK9A4GfAlIaUUpRoFUu1aBZHQNVtQUj9n9N1fZQoaAZoCWgPQwjyXN+HQ8tyQJSGlFKUaBVL5GgWR0DVbUWC/XXidX2UKGgGaAloD0MIT5XvGckUc0CUhpRSlGgVTQYBaBZHQNVtUawdKdx1fZQoaAZoCWgPQwiGWtO8o+1xQJSGlFKUaBVL8mgWR0DVbWlIsiB5dX2UKGgGaAloD0MIb0p5rUQUcECUhpRSlGgVTbIBaBZHQNVtallK9PF1fZQoaAZoCWgPQwieP21U54tyQJSGlFKUaBVLz2gWR0DVbW0eq7yydX2UKGgGaAloD0MIdjQO9bukRkCUhpRSlGgVS5NoFkdA1W11Ip6QeXV9lChoBmgJaA9DCLwhjQqcu3NAlIaUUpRoFUvfaBZHQNVteZbUwzt1fZQoaAZoCWgPQwheglMfSI4bwJSGlFKUaBVLfWgWR0DVbX7euV5bdX2UKGgGaAloD0MI/mSMD/N1c0CUhpRSlGgVTQUBaBZHQNVts2r4nF51fZQoaAZoCWgPQwjGFoIcFBhvwJSGlFKUaBVNCQNoFkdA1W24Ig/1QXV9lChoBmgJaA9DCObKoNrgi3FAlIaUUpRoFU0GAWgWR0DVbcDlA/s3dX2UKGgGaAloD0MIx/DYz2J1Q0CUhpRSlGgVS6VoFkdA1W3T/I8yOHV9lChoBmgJaA9DCAIR4soZXnBAlIaUUpRoFU3uAWgWR0DVbdSTr3TNdX2UKGgGaAloD0MItksbDss/c0CUhpRSlGgVTQUBaBZHQNVt3BqO9391fZQoaAZoCWgPQwiNYOP6t9xyQJSGlFKUaBVL22gWR0DVbd8W1twadX2UKGgGaAloD0MIm6+Sj93JWkCUhpRSlGgVTegDaBZHQNVt5CYTkAB1fZQoaAZoCWgPQwjgg9cureNxQJSGlFKUaBVNHAFoFkdA1W4IilSCOHV9lChoBmgJaA9DCLNCke5nTHFAlIaUUpRoFU2LAmgWR0DVbg9JlJ6IdX2UKGgGaAloD0MIw7zHmSZqcUCUhpRSlGgVTYoBaBZHQNVuD8YdhiN1fZQoaAZoCWgPQwgKavgW1s1BQJSGlFKUaBVLi2gWR0DVcD80vXbudX2UKGgGaAloD0MIhbNby2SuQECUhpRSlGgVS7JoFkdA1XBDgHu7YnV9lChoBmgJaA9DCGAF+G4zmXBAlIaUUpRoFU16AWgWR0DVcEON6w+udX2UKGgGaAloD0MIq3e4HVp8cUCUhpRSlGgVS+9oFkdA1XBEopQUH3V9lChoBmgJaA9DCEJ8YMd/AW9AlIaUUpRoFUv/aBZHQNVwT8Djin51fZQoaAZoCWgPQwja5PBJp2xwQJSGlFKUaBVLvWgWR0DVcE/QeFL4dX2UKGgGaAloD0MIwa27eapmcUCUhpRSlGgVTR4BaBZHQNVwZjiwSrZ1fZQoaAZoCWgPQwgL7ZxmQSpxQJSGlFKUaBVL1GgWR0DVcInDpC8fdX2UKGgGaAloD0MI8ppXdZYyc0CUhpRSlGgVS/hoFkdA1XClr1/UfHV9lChoBmgJaA9DCAyVfy2voHFAlIaUUpRoFUusaBZHQNVwqU9ECvJ1fZQoaAZoCWgPQwi+vAD7aAxyQJSGlFKUaBVNAAFoFkdA1XCrGyon8nV9lChoBmgJaA9DCCqnPSWneXFAlIaUUpRoFU2LAWgWR0DVcLOMCLdfdX2UKGgGaAloD0MIdJmaBO8UckCUhpRSlGgVTX4BaBZHQNVwuE5yU9p1fZQoaAZoCWgPQwjrHAOyV6lvQJSGlFKUaBVNTgNoFkdA1XC46sQumXV9lChoBmgJaA9DCKuTMxQ31XJAlIaUUpRoFUvtaBZHQNVwvrz06HV1fZQoaAZoCWgPQwjku5S6pF1wQJSGlFKUaBVLqmgWR0DVcMB4D9wWdX2UKGgGaAloD0MIHaz/c1jEc0CUhpRSlGgVS/xoFkdA1XDEapPykXV9lChoBmgJaA9DCMAGRIir03BAlIaUUpRoFU0QAWgWR0DVcNjoC+10dX2UKGgGaAloD0MIFjWYhqESckCUhpRSlGgVS7hoFkdA1XDmfiPyTnV9lChoBmgJaA9DCCE9RQ6RmWFAlIaUUpRoFU3oA2gWR0DVcOtJWeYldX2UKGgGaAloD0MIaCJseDo9c0CUhpRSlGgVS9hoFkdA1XELcUuct3V9lChoBmgJaA9DCP0ubM0WkXBAlIaUUpRoFUvoaBZHQNVxFjRYzSF1fZQoaAZoCWgPQwja/pWVJuVQQJSGlFKUaBVLwmgWR0DVcRm0a6z3dX2UKGgGaAloD0MILudSXJUbcECUhpRSlGgVTSkDaBZHQNVxGq/dqL11fZQoaAZoCWgPQwhMwoU8wgxyQJSGlFKUaBVL1WgWR0DVcSACcPOIdX2UKGgGaAloD0MI4e6s3bY2cECUhpRSlGgVS+1oFkdA1XEggW8AaXV9lChoBmgJaA9DCFYQA117Z3FAlIaUUpRoFUvoaBZHQNVxIgMQVbl1fZQoaAZoCWgPQwidTNwqCD9uQJSGlFKUaBVL+2gWR0DVcSmWOZLJdX2UKGgGaAloD0MIt2PqruzQcUCUhpRSlGgVTQcBaBZHQNVxOAtjCpF1fZQoaAZoCWgPQwi9VkJ3ydlxQJSGlFKUaBVLzWgWR0DVcULrnkksdX2UKGgGaAloD0MIs3vysJBQcUCUhpRSlGgVS+RoFkdA1XFISwGGEnV9lChoBmgJaA9DCN/cXz3ugzVAlIaUUpRoFUtqaBZHQNVxU5pBX0Z1fZQoaAZoCWgPQwjAXmHB/fZwQJSGlFKUaBVNqwNoFkdA1XFdi4J/onV9lChoBmgJaA9DCIWUn1Q7AnJAlIaUUpRoFUvOaBZHQNVxYNVWCEp1fZQoaAZoCWgPQwhFZFjFm01zQJSGlFKUaBVL2GgWR0DVcXiCf6GhdX2UKGgGaAloD0MIT7FqEObQbkCUhpRSlGgVTdUBaBZHQNVxeYWLxZx1fZQoaAZoCWgPQwidf7vsF6NyQJSGlFKUaBVL9WgWR0DVcX94+r2hdX2UKGgGaAloD0MIKEaWzLHATkCUhpRSlGgVS79oFkdA1XGIhBZ6lnV9lChoBmgJaA9DCPT4vU1/fm9AlIaUUpRoFUv+aBZHQNVxiqjFhod1fZQoaAZoCWgPQwjbi2g7puxyQJSGlFKUaBVNCAFoFkdA1XGNGJvYOHV9lChoBmgJaA9DCIy+gjTjQ2tAlIaUUpRoFU0mAWgWR0DVcY/HZK4AdX2UKGgGaAloD0MIEJaxoVuicECUhpRSlGgVTbkBaBZHQNVxlVD4QBh1fZQoaAZoCWgPQwieeqTBbV1wQJSGlFKUaBVNTgFoFkdA1XGgdHDrJXV9lChoBmgJaA9DCG3lJf/TkHNAlIaUUpRoFUvraBZHQNVxp0lJHy51fZQoaAZoCWgPQwg4LA38KEJwQJSGlFKUaBVLxmgWR0DVca98b70ndX2UKGgGaAloD0MIXWqEfqawRUCUhpRSlGgVS5ZoFkdA1XGyuR9w33V9lChoBmgJaA9DCDUNiuZBQ3FAlIaUUpRoFUv+aBZHQNVxuYfnwG51fZQoaAZoCWgPQwhXIlD9g/VtQJSGlFKUaBVNbANoFkdA1XHJIF/x2HV9lChoBmgJaA9DCHy1ozjH9XBAlIaUUpRoFUvCaBZHQNVx1X7Hhjx1fZQoaAZoCWgPQwj3kzE+zFRxQJSGlFKUaBVLw2gWR0DVcdiAkLQYdX2UKGgGaAloD0MIX+/+eG+zckCUhpRSlGgVS+ZoFkdA1XHZXf642HV9lChoBmgJaA9DCO+oMSGmNnJAlIaUUpRoFUviaBZHQNVx4VMRHwx1fZQoaAZoCWgPQwibx2EwP1JxQJSGlFKUaBVLu2gWR0DVcfYbPyCndX2UKGgGaAloD0MIcvvlkxXPbUCUhpRSlGgVTXYBaBZHQNVx962fChx1fZQoaAZoCWgPQwgv4dBbPIhTQJSGlFKUaBVN6ANoFkdA1XH81TR6W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4884, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}} |