File size: 20,251 Bytes
f19c33e 71302e4 f19c33e 71302e4 f19c33e 71302e4 f19c33e e8eb670 f19c33e 1e7f01e f19c33e 71302e4 f19c33e fec7e68 f19c33e 71302e4 f19c33e 71302e4 fec7e68 f19c33e fec7e68 f19c33e 71302e4 f19c33e 71302e4 f19c33e 200a867 f19c33e 71302e4 f19c33e 200a867 9d7cfa9 f19c33e 71302e4 fec7e68 f19c33e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ce0f6ae50>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ce0f6aee0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ce0f6af70>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ce0f6e040>",
"_build": "<function ActorCriticPolicy._build at 0x7f6ce0f6e0d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f6ce0f6e160>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ce0f6e1f0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f6ce0f6e280>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ce0f6e310>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ce0f6e3a0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ce0f6e430>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f6ce0f6b1b0>"
},
"verbose": 1,
"policy_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu",
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
"net_arch": [
128,
64,
{
"pi": [
64,
32
],
"vf": [
64,
32
]
}
]
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 128,
"num_timesteps": 20054016,
"_total_timesteps": 20000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651728713.0254502,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAACZVnz3ONfs9ouCYvI5Mub4UfhM+E2rIPQAAAAAAAAAAM9+Mu7Ylsj/6FFi++3LgvsZ/PDtWw9c7AAAAAAAAAACAjRk9rr2VusvzcD30xSWzqaLGujWGT7MAAIA/AACAPwC6hTyFU+K7oAMbvvRPIrw9AA08auEyvgAAgD8AAIA/5poePR88+rtHxjG9vxlNPcOROj01M0W8AACAPwAAgD+6NQQ+nSGCPg4Lrr4+RDa/+nqEPaqKbr4AAAAAAAAAALP2dD3D8VK68mhnuhWe17VVzL068jOGOQAAgD8AAAAAZlZvPHd3sj9Qtk8+ak8+vte7TLyhVqC7AAAAAAAAAAAAPoc80h3Bu/4A1L291JI9o5MyOzIDVDsAAIA/AACAPwAShzyPHl66GtJwPd/fDTnYBlc7YbcKOAAAgD8AAIA/ZmbsunFyc7szoB48Cy+NPMeBn7yWKnI9AACAPwAAgD+aEwU8wxV6upbjQbQmdJavyOkZu9AosTMAAIA/AACAPwAnA73UFDM/1bqCvPEde7/1QqO9en0JPQAAAAAAAAAAzShAPjEFiD8FNaY+aY4Wv2BS5z5qPI0+AAAAAAAAAACaoRc8uNbAuU+SnLauxS2y35S/OoaGuzUAAIA/AACAP2A8Hr5qo/I+a+zzPakiMb9ROqa+JtvQPQAAAAAAAAAAgPQxPRyycry2IAC+kRYAvFTQVTtA1Ay+AACAPwAAgD8AceE8Y+FJPVC1EL4ZW8S+JiUCPhb1J7sAAAAAAAAAALNZEj7IonQ/rgK8PtaPLb9g+J8+WgilPgAAAAAAAAAAZjD6vEGSpLx2+rQ+myiSu35Yi72hQY+9AACAPwAAgD/NKu48klqsP/7zjT7dw8++RcTwu07jLT0AAAAAAAAAAJNdNL5f4Tg/X28dPs7ZV7/RZrK+scIXPgAAAAAAAAAADVP5veEAEj9SpfU9DrBav/fvY76LIf89AAAAAAAAAAAAmJ27e19+P7isv7zLF2q/jy1BvfDDnT0AAAAAAAAAAJqiw7w20rI/lwI1vvnlSb4xeOS8XgsBvgAAAAAAAAAAZia/O9DHtD83QRc/T++BPbpE3bu1Cwm+AAAAAAAAAADmFks9H+Pau4OWbb4iKAM932VMPSj+170AAIA/AACAP7vDg742gXE/gtM0vjtTDr/wSRq/otGuvQAAAAAAAAAANaSNviHHPj/tb2Y9kZo7v8kMBL+ukW8+AAAAAAAAAAC21VW+F8pHPxoq07u9Y1O/cqzUvsYOaj0AAAAAAAAAAOa1YD5srBI/y7invnE6Q78GE8s+vu20vgAAAAAAAAAAzSY6vGhAqz+2WDG+f3Qbv08+MbzX3r+9AAAAAAAAAABmkBc9X6kfPk0Asr1U7AO/sW7fu5bH+7wAAAAAAAAAAJqHMz68wIY/1oyzPt3NHL/GftU+4yGVPgAAAAAAAAAAk9FUPkYovz7zK9y+X5g4v1Jblz7u1Ny+AAAAAAAAAABmZ+M8EUqmPzdKnj6DCje/+jGvPB35Rj4AAAAAAAAAAG23Oj5w650+F3CXvmRIKL+PozY+Mj5mvgAAAAAAAAAAACPGPIQFoT+KUVw+54dMv/bAGz31dCs+AAAAAAAAAAAAS4o9s68aP9FRsD2FuEe/T9D5PR1sK70AAAAAAAAAAM1Yjbxb9Uk/7tpEPYVqgb/OG6O9EyQDPgAAAAAAAAAAmhbpvCayej9+P8+9vgSDv21pU70hq8Q6AAAAAAAAAABmZYI8HzT6PB447rz7hZG+3gLIPMjthrwAAAAAAAAAADMm+jw2ixq8ZUsPvoLGITwpnZc9HHUKvQAAgD8AAIA/M0xRPlxWrj8GRws/ORYAv2ANnz5rP+o+AAAAAAAAAACmn+W9dXu1P8I3nb7GQ8G+3CQpvsqdtb4AAAAAAAAAAOZ3PD6nG5U/hXfzPkGA8r7mJK8+LjK1PgAAAAAAAAAAAIsRvgd0/z7IdxM+maNCv3Sgib6ikkk+AAAAAAAAAACz8Rk9qBmrP3OjMD66WdW+Q7iBPCYgmD0AAAAAAAAAAC39Oz4hsYk/YAPsPtsRGL+KYsU+HezSPgAAAAAAAAAAM/qUPIUQ2rvMbrq967/BPMaeXT04yqC9AACAPwAAgD+znxk+JiGDP/btiz6x5DG/Ny3OPqALST4AAAAAAAAAAJrpBr3gSbI/mtdLvtmibL76+1u9VuJSvgAAAAAAAAAAmlFgPK6Isj8dImA+vG4+vpLz2bmL2RQ9AAAAAAAAAADNsB28T8A7vC6QLj6GMka9uGoZPUIjvz4AAIA/AACAP2bOVrxBJO0+qEgaPbDdYr/7Iqq7nOiuuwAAAAAAAAAAs8oUveHQp7qGYka40O4Us9iEfToG2yczAACAPwAAgD9mfcY87L26PzjDXj60B/s8VGnrusIdhb0AAAAAAAAAAGbjhzxIO4i6dnhkObp7CTTVvWC6siuEuAAAgD8AAIA/UxODPif2Mj/jjIa+Ojg8v1FQ4j5fQ6O+AAAAAAAAAADa4AA+wv9FPvnxuL4HDgy/TZmMPbMRr74AAAAAAAAAAM0uoLwGOZY/scqLvfHYQb8/qTW+FQCjvAAAAAAAAAAAgLuzPS98pD9/4Z8+rmwKvwUl8z0qoJU+AAAAAAAAAAC6bVG+Cw16P2bczr5FSBG/h1e/vpyuir4AAAAAAAAAAM0AEr24S6Q8UzniPslxc75jbIs+6GvNvgAAAAAAAIA/wCzGPb1L+D7uyBu8opg/vzbyIj5G/Pa8AAAAAAAAAAAzEUq8j3YqunHtura+1JWxqCbHOABk3jUAAIA/AACAP818AT5tPWE+c4XUvt9WHL9UKG89jFSqvgAAAAAAAAAAgNolPUinhboAYh++DbY3t9DMRTcALqQ2AACAPwAAgD/N8EO8Yd2NvA3mjT50Yb674vMZPZWdDj4AAIA/AACAPwAVtrwik4w/0aqwvTC9Sb8eOgS+08JXPQAAAAAAAAAAZgahOx/czLtILne8M8c3PFAAIz1e1B69AACAPwAAgD+akBa99lpNPaDhTD7Hdqm+IAERuz00/j0AAAAAAAAAADNHKjzpVA685A2BPZZJGD3aUWu9sDj3PQAAgD8AAIA/zevqPCl4d7pfgSG80YuVPB77Gzo//IG9AACAPwAAgD8zK2S76XFpvNUdjD7GNsu9jV5HPOoiQz4AAIA/AACAP3OtJj5vEbY/qhXwPmaL074Ze4w+HYNsPgAAAAAAAAAAZl2KvFrltT8Dpxe+C8SYvbArubx+aPS9AAAAAAAAAACaify7OHXJPj8VGD15qz6/1yMGvTYxhDwAAAAAAAAAAAAyFjwUkKG6ZFIwOWvrKDQxzJ86NANLuAAAgD8AAIA/ZixwPK57krqWDD0zF7xvLvW+7jrmArWzAACAPwAAgD/LTq6+DFaSPw62qL333RG/FqI6vxmgLz0AAAAAAAAAAAC4iTzICKe8kJB1voG1dT1XD+c8eFw9vAAAgD8AAIA/mm5RvezFpz+hWxu/eVwmv4HIaTsYHPu9AAAAAAAAAABme7Y8bOjJu3Zr9721jmi90XtJPShld74AAAAAAACAPzNzAbxIzrw9G9Qvvbbl5r6QM0S9oKaGvQAAAAAAAAAA5vIhvdcrdLtJL68+/9kvvu4fibyEsIy/AACAPwAAgD+a1Xq9DycevC6HCj57VFe+fp0NvV9ngj8AAIA/AACAP82hi70FM4c+OhtdPvUtHr+0Zoq9S6IFPgAAAAAAAAAAANT+vHtuj7qqFBA5adgQNOdZKblCIie4AACAPwAAgD/Nydw8ccMTu57WGL6SzBk7o5nYO/T0JbwAAIA/AACAP4A7QL3RTbE/WmuivmVdfb6Pm8C8UiNRvgAAAAAAAAAAZhfGPHvUjLqdgmQ2c7OYsLt6LLvl9YG1AACAPwAAgD/NN3A9Osl8P1qGPz5WEXW/JS4qPj2Z7D0AAAAAAAAAAJqe0DwUjIG6+nAtNSJXPDD0lAa6ELlUtAAAgD8AAIA/5skRvq29Lj54YCE/0LAFv9kRD70lGd8+AAAAAAAAAADNmIq7ewqNusvEYzceicQyFFmcOcFegrYAAIA/AACAP+qWhz5zWzI/Di6Xujy1N7++dRg/iX9FvgAAAAAAAAAAAAD2uCloErptMYU88a0MM1QNSbuNnnEzAACAPwAAgD9mxkU66EqxPzdlszwhcHm+Mo+kvLbFuL0AAAAAAAAAAM206zxIV6i6u1CcPe9Guzz6E0c7ULugvQAAgD8AAIA/rdo8vofRlj+gkWa+19MpvyDV2r7DuSi+AAAAAAAAAADNDCi7wzU2ugCuIbWA3/2vrGf0Ok1ZXTQAAIA/AACAP0Ael737/EU/SZkNvr6qbL8TGiy+Y7oWPQAAAAAAAAAAGmjovYxmjD9mJ2S+i8k1v/C+qL5yttS9AAAAAAAAAABzz6Y9rOe5PzT0Az8rE4K9d9ZJut2A4D0AAAAAAAAAAE2IJz2PkjQ5jmqhNQnVEzD7OJ+6Qm26tAAAgD8AAIA/zdjgu+E2irqyzoQ9s+S1Ms3z9zqIH0YyAACAPwAAgD+mhMc9CN3JPQvO4r4rc9e+CcQdvheMw74AAAAAAAAAAOaVJ74wRIQ/PaiQvo5SLL+Wuuy+x+WuvQAAAAAAAAAAqp50vkA15j5qzTs+NZEtv/1G977Aplw+AAAAAAAAAABmM1S9MeemP1/HyL61BQu/y0RIvROmZL4AAAAAAAAAAJrJQrwpSF+630QHM0l5XDCWa1M7LO62swAAgD8AAIA/swxcPUhDg7rNqCu07xyBr3GxDboo/64zAACAPwAAgD+avoi8zxRtvEcuTD4EZ0g8yIAUvXbW1T0AAIA/AACAP4AUuT3JqEU9G2lpvuN3sL5XScu88FY1vgAAAAAAAAAA2id0Pk40Uj+0ARg+D3Mkv7HZDz9FDCM8AAAAAAAAAADNGGw8HzaFu0bMIb6Xoos9r7Khu3weqjoAAIA/AACAPzPzejwKF367sllzPYftgz3vGiu8IJPSPAAAgD8AAIA/ZnYaO1LI57kKddy3PQIYs8tI/zpdJwM3AAAAAAAAgD+27XG+N8o8P/2HbDwTLCa/6ZsHvw1lzz0AAAAAAAAAAAaXH75YrR8/aucBvaCFQb843sS+fKEiPQAAAAAAAAAAgHOBvXs4AT83hIm7RXFUv5i0Br5WiUw8AAAAAAAAAACzapw9g8j7PrOdZz0HLle/EUkKPms6Fj0AAAAAAAAAAAD1tzzXuQG7Cu9/vV42pTy75Lg7GkmOvQAAgD8AAIA/AG/XPfO8LT8Wpw8+s89Jv5dPTj4/a6U8AAAAAAAAAABNvqi96EUTP8K4Urw9XVG/3jxDvlkshzsAAAAAAAAAAGYFrzxcgwG6goeAPdFgaDPNuRO5+kp/sgAAgD8AAIA/M1qAPdfVTTzDqqK+P1iMvo06Er55BC2+AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0027007999999999477,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFf2hmadYckCUhpRSlIwBbJRLh4wBdJRHQLZ1PDk2gnN1fZQoaAZoCWgPQwj+ZffkoX5yQJSGlFKUaBVLnWgWR0C2dUKsIVuadX2UKGgGaAloD0MIkGtDxTj9cUCUhpRSlGgVS59oFkdAtnVB9Vmz0HV9lChoBmgJaA9DCNEGYAMiPnNAlIaUUpRoFUu5aBZHQLZ1R3974SJ1fZQoaAZoCWgPQwge+YOBJ79zQJSGlFKUaBVLw2gWR0C2dUdbs4T9dX2UKGgGaAloD0MIamrZWh9Hc0CUhpRSlGgVS8ZoFkdAtnVdC9h7V3V9lChoBmgJaA9DCPMDV3kCOnNAlIaUUpRoFUuxaBZHQLZ1Y/M4cWF1fZQoaAZoCWgPQwgfhIB8yfJxQJSGlFKUaBVLq2gWR0C2dW+xGDtgdX2UKGgGaAloD0MIfh6jPHOvcUCUhpRSlGgVS6poFkdAtnV7voePrHV9lChoBmgJaA9DCCdPWU2XRHBAlIaUUpRoFUuMaBZHQLZ1e18b70p1fZQoaAZoCWgPQwieJcgIaBN0QJSGlFKUaBVLx2gWR0C2dYhg3LmqdX2UKGgGaAloD0MIh2pKso7YcECUhpRSlGgVS6xoFkdAtnWGh0yP/HV9lChoBmgJaA9DCE1Iawx6cXNAlIaUUpRoFUu8aBZHQLZ1jgG8mKJ1fZQoaAZoCWgPQwhvRWKCWkZyQJSGlFKUaBVLl2gWR0C2dYz1schldX2UKGgGaAloD0MIG53zU5xNc0CUhpRSlGgVS9NoFkdAtnWReE7GN3V9lChoBmgJaA9DCA6/m27ZbXNAlIaUUpRoFUu6aBZHQLZ1mAwPAfx1fZQoaAZoCWgPQwhyM9yAz/VxQJSGlFKUaBVLu2gWR0C2dZ+vMbFTdX2UKGgGaAloD0MIoYDtYMRIdECUhpRSlGgVS9ZoFkdAtnWp09yLh3V9lChoBmgJaA9DCN4FSgpsg3FAlIaUUpRoFUu2aBZHQLZ1p7kn1Fp1fZQoaAZoCWgPQwium1JeqytxQJSGlFKUaBVLlmgWR0C2dbMcZLqVdX2UKGgGaAloD0MIAOMZNPSrc0CUhpRSlGgVS6toFkdAtnW7SCvovHV9lChoBmgJaA9DCOI6xhUXT3JAlIaUUpRoFUu3aBZHQLZ1yX3g1m91fZQoaAZoCWgPQwjqQUEpmj1zQJSGlFKUaBVLtmgWR0C2deLEP1+RdX2UKGgGaAloD0MImUUotsJXdECUhpRSlGgVS6toFkdAtnXuIj4YanV9lChoBmgJaA9DCECJz52gWHBAlIaUUpRoFUuWaBZHQLZ18brkbP11fZQoaAZoCWgPQwgiHLPsiYFxQJSGlFKUaBVLqGgWR0C2dfmTHKfWdX2UKGgGaAloD0MIMxe4PNafc0CUhpRSlGgVS7loFkdAtnX+l2vB8HV9lChoBmgJaA9DCJNzYg+tcXBAlIaUUpRoFUudaBZHQLZ1/StvGZN1fZQoaAZoCWgPQwicTUcAdxtzQJSGlFKUaBVLwmgWR0C2dgg4ffXPdX2UKGgGaAloD0MIh6JAn0ixcUCUhpRSlGgVS6toFkdAtnYbDdgv13V9lChoBmgJaA9DCEloy7nUnnBAlIaUUpRoFUuhaBZHQLZ2JiI+GGp1fZQoaAZoCWgPQwjQK556ZNlwQJSGlFKUaBVLk2gWR0C2djhcJMQFdX2UKGgGaAloD0MImx9/aVHmckCUhpRSlGgVS6poFkdAtnY/HYHxBnV9lChoBmgJaA9DCAd7E0Ny73JAlIaUUpRoFUvEaBZHQLZ2RAPuogp1fZQoaAZoCWgPQwhkdavnpDtzQJSGlFKUaBVLtWgWR0C2dkorBj4IdX2UKGgGaAloD0MIjZjZ5/E0cUCUhpRSlGgVS6VoFkdAtnZQ04zabnV9lChoBmgJaA9DCKbTug2q/3JAlIaUUpRoFUvJaBZHQLZ2Vnq3VkN1fZQoaAZoCWgPQwhVF/AyA49xQJSGlFKUaBVLoWgWR0C2dlRLwnYydX2UKGgGaAloD0MIIsSVs/fIc0CUhpRSlGgVS6JoFkdAtnZiWjXWfHV9lChoBmgJaA9DCALYgAhx0nJAlIaUUpRoFUuTaBZHQLZ2aEYfnwJ1fZQoaAZoCWgPQwjvG197ptJzQJSGlFKUaBVLtWgWR0C2dnL/82rGdX2UKGgGaAloD0MIOEpenWMBdECUhpRSlGgVS7RoFkdAtnZ3yAhB7nV9lChoBmgJaA9DCLMpV3hXInNAlIaUUpRoFUu4aBZHQLZ2hVDrqt51fZQoaAZoCWgPQwgPSMK+nUxxQJSGlFKUaBVLpWgWR0C2doPNmlImdX2UKGgGaAloD0MIa2RXWgbRckCUhpRSlGgVS59oFkdAtnaK7rcCYHV9lChoBmgJaA9DCMWPMXetkXJAlIaUUpRoFUuSaBZHQLZ2kLeyiVV1fZQoaAZoCWgPQwgLmSuDKn1yQJSGlFKUaBVLhGgWR0C2dpCnDR+jdX2UKGgGaAloD0MI4SajynCmcUCUhpRSlGgVS55oFkdAtnaO5Xlr/XV9lChoBmgJaA9DCIHNOXjmynFAlIaUUpRoFUulaBZHQLZ2voE0SAZ1fZQoaAZoCWgPQwjHDipxHa9zQJSGlFKUaBVLsWgWR0C2dsIxtYSydX2UKGgGaAloD0MIRZxOshWackCUhpRSlGgVS4VoFkdAtnbB0q6OHXV9lChoBmgJaA9DCCKMn8Z9vXFAlIaUUpRoFUusaBZHQLZ2zjPOY6Z1fZQoaAZoCWgPQwh1c/G3vX1xQJSGlFKUaBVLnmgWR0C2dt7laKUFdX2UKGgGaAloD0MIY3rCEk+PcUCUhpRSlGgVS7BoFkdAtnbl/SYw7HV9lChoBmgJaA9DCHy1oziHcHJAlIaUUpRoFUu3aBZHQLZ27IPsiSt1fZQoaAZoCWgPQwi4sG68u2FxQJSGlFKUaBVLkmgWR0C2duqsuFpPdX2UKGgGaAloD0MI1SZO7vc1ckCUhpRSlGgVS7ZoFkdAtnb4DPnjhnV9lChoBmgJaA9DCMgoz7xcenFAlIaUUpRoFUusaBZHQLZ3Ag3Lmp51fZQoaAZoCWgPQwgAHebLCyxyQJSGlFKUaBVLiWgWR0C2dwhV+7UYdX2UKGgGaAloD0MIqHLaU/K0ckCUhpRSlGgVS7poFkdAtncOrPt2LnV9lChoBmgJaA9DCKBU+3S8+HFAlIaUUpRoFUuqaBZHQLZ3FEJBw/B1fZQoaAZoCWgPQwjcvdwnR6tyQJSGlFKUaBVLrGgWR0C2dxxuCPIXdX2UKGgGaAloD0MIzvxqDhDIcECUhpRSlGgVS5ZoFkdAtnczUnXumnV9lChoBmgJaA9DCPLs8q1PU3JAlIaUUpRoFUuNaBZHQLZ3SStvGZN1fZQoaAZoCWgPQwjoobYN4xhyQJSGlFKUaBVLr2gWR0C2d11u3trsdX2UKGgGaAloD0MIM8NGWb/Sc0CUhpRSlGgVS9JoFkdAtndbfJmuknV9lChoBmgJaA9DCInS3uBL6XJAlIaUUpRoFUuaaBZHQLZ3Y1q33Ht1fZQoaAZoCWgPQwjAPc+fdhx0QJSGlFKUaBVLt2gWR0C2d2Muez2OdX2UKGgGaAloD0MIJAnCFVAbb0CUhpRSlGgVS45oFkdAtndiq1gH/3V9lChoBmgJaA9DCCmwAKaMI3BAlIaUUpRoFUuHaBZHQLZ3YfdRBNV1fZQoaAZoCWgPQwjVeOkmsfVxQJSGlFKUaBVLi2gWR0C2d2iY1He8dX2UKGgGaAloD0MIICi37Xv6ckCUhpRSlGgVS6RoFkdAtnd06bONYXV9lChoBmgJaA9DCCUi/Iug03FAlIaUUpRoFUvZaBZHQLZ3dPgvUSZ1fZQoaAZoCWgPQwgb2ZWW0TpxQJSGlFKUaBVLjWgWR0C2d3Rz/6wddX2UKGgGaAloD0MIXFoNiXvgRkCUhpRSlGgVS2NoFkdAtnd6mhufmXV9lChoBmgJaA9DCJKwbydRiXNAlIaUUpRoFUusaBZHQLZ3hse4kNZ1fZQoaAZoCWgPQwisHjAPmVRzQJSGlFKUaBVLuGgWR0C2d4yR4hUzdX2UKGgGaAloD0MIEw8om3JCc0CUhpRSlGgVS9BoFkdAtneLomoitHV9lChoBmgJaA9DCK4q+65IMXNAlIaUUpRoFUu8aBZHQLZ3k3Roh6l1fZQoaAZoCWgPQwjlRpG1hjtzQJSGlFKUaBVLxWgWR0C2d5LN8ma6dX2UKGgGaAloD0MIqFKzB5qMckCUhpRSlGgVS4loFkdAtnej38GcF3V9lChoBmgJaA9DCIbmOo2003JAlIaUUpRoFUvAaBZHQLZ3qPJaJRB1fZQoaAZoCWgPQwgNcEG2LN5xQJSGlFKUaBVLoWgWR0C2d8AiRnvldX2UKGgGaAloD0MIZvUOt0MUcECUhpRSlGgVS5doFkdAtnfbmbLEDXV9lChoBmgJaA9DCGGqmbWU7XBAlIaUUpRoFUujaBZHQLZ34rTH80l1fZQoaAZoCWgPQwhlGeJYF0lxQJSGlFKUaBVLtGgWR0C2d+ffO2RadX2UKGgGaAloD0MIJ4i6D0DbckCUhpRSlGgVS7loFkdAtnfvjFQ2uXV9lChoBmgJaA9DCKWEYFW9FXNAlIaUUpRoFUu6aBZHQLZ37r1uivh1fZQoaAZoCWgPQwig3oyab0txQJSGlFKUaBVLrmgWR0C2d+2vr4WUdX2UKGgGaAloD0MILA/SU+S3ckCUhpRSlGgVS8JoFkdAtnf7t3OfNHV9lChoBmgJaA9DCEnYt5MIKHJAlIaUUpRoFUu2aBZHQLZ3+2Pkq+d1fZQoaAZoCWgPQwioNjgRPe9wQJSGlFKUaBVLmWgWR0C2d/pflZHNdX2UKGgGaAloD0MIuM1UiEe3ckCUhpRSlGgVS7BoFkdAtngHT+ee4HV9lChoBmgJaA9DCMgljjzQ7nBAlIaUUpRoFUuuaBZHQLZ4Bhh6Skl1fZQoaAZoCWgPQwjnxYmvttFyQJSGlFKUaBVL3GgWR0C2eA4atLcsdX2UKGgGaAloD0MIhbUxdkLVc0CUhpRSlGgVS8VoFkdAtngL0UXYUXV9lChoBmgJaA9DCDNOQ1ThuHJAlIaUUpRoFUu4aBZHQLZ4E14xDb91fZQoaAZoCWgPQwh3g2itaHVxQJSGlFKUaBVLqmgWR0C2eBK2a2F4dX2UKGgGaAloD0MIXJGYoIbackCUhpRSlGgVS75oFkdAtngq1PWQOnV9lChoBmgJaA9DCL1tpkL833JAlIaUUpRoFUu9aBZHQLZ4L9t/Fzd1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 612,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 1024,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |