cterdam commited on
Commit
1855319
·
verified ·
1 Parent(s): 2a4a294

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: deepseek-ai/deepseek-coder-1.3b-instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "k_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "v_proj",
27
+ "q_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d76515933dc1c2cf8c456683fd689f123391051f239aa831d1f80056c06d17
3
+ size 119975656
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d611c340e44ffb28d62426aa8860899647ba50ba0e4539c8c093901bf438cb01
3
+ size 60477396
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:443d056a0d0d4af964fa502e780199ba62f1a3c8f25e36674b083e90a89ba1ed
3
+ size 14180
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1d5b6062c3d2bcc942c3f308d7b1a16daae090511b1b21687f3981fca553e4
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,1053 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.581755593803787,
5
+ "eval_steps": 500,
6
+ "global_step": 12000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 1.281562089920044,
14
+ "learning_rate": 4e-05,
15
+ "loss": 0.5044,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.04,
20
+ "grad_norm": 1.3552560806274414,
21
+ "learning_rate": 8e-05,
22
+ "loss": 0.4867,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.06,
27
+ "grad_norm": 0.8318453431129456,
28
+ "learning_rate": 0.00012,
29
+ "loss": 0.4359,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.09,
34
+ "grad_norm": 1.3478361368179321,
35
+ "learning_rate": 0.00016,
36
+ "loss": 0.4475,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.11,
41
+ "grad_norm": 1.1437219381332397,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.4524,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.11,
48
+ "eval_loss": 0.3725915253162384,
49
+ "eval_runtime": 90.4733,
50
+ "eval_samples_per_second": 11.053,
51
+ "eval_steps_per_second": 2.763,
52
+ "step": 500
53
+ },
54
+ {
55
+ "epoch": 0.13,
56
+ "grad_norm": 0.8374431133270264,
57
+ "learning_rate": 0.00019897435897435898,
58
+ "loss": 0.4569,
59
+ "step": 600
60
+ },
61
+ {
62
+ "epoch": 0.15,
63
+ "grad_norm": 1.6386727094650269,
64
+ "learning_rate": 0.00019794871794871796,
65
+ "loss": 0.4584,
66
+ "step": 700
67
+ },
68
+ {
69
+ "epoch": 0.17,
70
+ "grad_norm": 1.4089267253875732,
71
+ "learning_rate": 0.00019692307692307696,
72
+ "loss": 0.4625,
73
+ "step": 800
74
+ },
75
+ {
76
+ "epoch": 0.19,
77
+ "grad_norm": 2.269509792327881,
78
+ "learning_rate": 0.0001958974358974359,
79
+ "loss": 0.464,
80
+ "step": 900
81
+ },
82
+ {
83
+ "epoch": 0.22,
84
+ "grad_norm": 1.0896354913711548,
85
+ "learning_rate": 0.00019487179487179487,
86
+ "loss": 0.4807,
87
+ "step": 1000
88
+ },
89
+ {
90
+ "epoch": 0.22,
91
+ "eval_loss": 0.3314511179924011,
92
+ "eval_runtime": 90.3867,
93
+ "eval_samples_per_second": 11.064,
94
+ "eval_steps_per_second": 2.766,
95
+ "step": 1000
96
+ },
97
+ {
98
+ "epoch": 0.24,
99
+ "grad_norm": 1.0933148860931396,
100
+ "learning_rate": 0.00019384615384615385,
101
+ "loss": 0.4032,
102
+ "step": 1100
103
+ },
104
+ {
105
+ "epoch": 0.26,
106
+ "grad_norm": 2.555145740509033,
107
+ "learning_rate": 0.00019282051282051282,
108
+ "loss": 0.4353,
109
+ "step": 1200
110
+ },
111
+ {
112
+ "epoch": 0.28,
113
+ "grad_norm": 2.245523452758789,
114
+ "learning_rate": 0.00019179487179487182,
115
+ "loss": 0.409,
116
+ "step": 1300
117
+ },
118
+ {
119
+ "epoch": 0.3,
120
+ "grad_norm": 2.084887981414795,
121
+ "learning_rate": 0.0001907692307692308,
122
+ "loss": 0.4214,
123
+ "step": 1400
124
+ },
125
+ {
126
+ "epoch": 0.32,
127
+ "grad_norm": 1.2279912233352661,
128
+ "learning_rate": 0.00018974358974358974,
129
+ "loss": 0.4507,
130
+ "step": 1500
131
+ },
132
+ {
133
+ "epoch": 0.32,
134
+ "eval_loss": 0.312484472990036,
135
+ "eval_runtime": 90.4149,
136
+ "eval_samples_per_second": 11.06,
137
+ "eval_steps_per_second": 2.765,
138
+ "step": 1500
139
+ },
140
+ {
141
+ "epoch": 0.34,
142
+ "grad_norm": 4.321805477142334,
143
+ "learning_rate": 0.0001887179487179487,
144
+ "loss": 0.4523,
145
+ "step": 1600
146
+ },
147
+ {
148
+ "epoch": 0.37,
149
+ "grad_norm": 1.376891016960144,
150
+ "learning_rate": 0.0001876923076923077,
151
+ "loss": 0.441,
152
+ "step": 1700
153
+ },
154
+ {
155
+ "epoch": 0.39,
156
+ "grad_norm": 2.077620267868042,
157
+ "learning_rate": 0.0001866666666666667,
158
+ "loss": 0.4392,
159
+ "step": 1800
160
+ },
161
+ {
162
+ "epoch": 0.41,
163
+ "grad_norm": 2.546964168548584,
164
+ "learning_rate": 0.00018564102564102566,
165
+ "loss": 0.4749,
166
+ "step": 1900
167
+ },
168
+ {
169
+ "epoch": 0.43,
170
+ "grad_norm": 2.035524845123291,
171
+ "learning_rate": 0.00018461538461538463,
172
+ "loss": 0.4116,
173
+ "step": 2000
174
+ },
175
+ {
176
+ "epoch": 0.43,
177
+ "eval_loss": 0.2960582375526428,
178
+ "eval_runtime": 90.8091,
179
+ "eval_samples_per_second": 11.012,
180
+ "eval_steps_per_second": 2.753,
181
+ "step": 2000
182
+ },
183
+ {
184
+ "epoch": 0.45,
185
+ "grad_norm": 1.3167320489883423,
186
+ "learning_rate": 0.00018358974358974358,
187
+ "loss": 0.4135,
188
+ "step": 2100
189
+ },
190
+ {
191
+ "epoch": 0.47,
192
+ "grad_norm": 2.908482074737549,
193
+ "learning_rate": 0.00018256410256410258,
194
+ "loss": 0.4092,
195
+ "step": 2200
196
+ },
197
+ {
198
+ "epoch": 0.49,
199
+ "grad_norm": 2.8161234855651855,
200
+ "learning_rate": 0.00018153846153846155,
201
+ "loss": 0.4364,
202
+ "step": 2300
203
+ },
204
+ {
205
+ "epoch": 0.52,
206
+ "grad_norm": 1.0435675382614136,
207
+ "learning_rate": 0.00018051282051282052,
208
+ "loss": 0.4258,
209
+ "step": 2400
210
+ },
211
+ {
212
+ "epoch": 0.54,
213
+ "grad_norm": 0.7152374982833862,
214
+ "learning_rate": 0.0001794871794871795,
215
+ "loss": 0.4208,
216
+ "step": 2500
217
+ },
218
+ {
219
+ "epoch": 0.54,
220
+ "eval_loss": 0.3006269633769989,
221
+ "eval_runtime": 90.5246,
222
+ "eval_samples_per_second": 11.047,
223
+ "eval_steps_per_second": 2.762,
224
+ "step": 2500
225
+ },
226
+ {
227
+ "epoch": 0.56,
228
+ "grad_norm": 1.79283607006073,
229
+ "learning_rate": 0.00017846153846153847,
230
+ "loss": 0.4209,
231
+ "step": 2600
232
+ },
233
+ {
234
+ "epoch": 0.58,
235
+ "grad_norm": 1.5817480087280273,
236
+ "learning_rate": 0.00017743589743589744,
237
+ "loss": 0.415,
238
+ "step": 2700
239
+ },
240
+ {
241
+ "epoch": 0.6,
242
+ "grad_norm": 2.306807279586792,
243
+ "learning_rate": 0.00017641025641025642,
244
+ "loss": 0.4231,
245
+ "step": 2800
246
+ },
247
+ {
248
+ "epoch": 0.62,
249
+ "grad_norm": 1.0432254076004028,
250
+ "learning_rate": 0.0001753846153846154,
251
+ "loss": 0.38,
252
+ "step": 2900
253
+ },
254
+ {
255
+ "epoch": 0.65,
256
+ "grad_norm": 1.0641353130340576,
257
+ "learning_rate": 0.00017435897435897436,
258
+ "loss": 0.4671,
259
+ "step": 3000
260
+ },
261
+ {
262
+ "epoch": 0.65,
263
+ "eval_loss": 0.3091895282268524,
264
+ "eval_runtime": 90.8377,
265
+ "eval_samples_per_second": 11.009,
266
+ "eval_steps_per_second": 2.752,
267
+ "step": 3000
268
+ },
269
+ {
270
+ "epoch": 0.67,
271
+ "grad_norm": 2.6519484519958496,
272
+ "learning_rate": 0.00017333333333333334,
273
+ "loss": 0.4148,
274
+ "step": 3100
275
+ },
276
+ {
277
+ "epoch": 0.69,
278
+ "grad_norm": 0.851606547832489,
279
+ "learning_rate": 0.00017230769230769234,
280
+ "loss": 0.37,
281
+ "step": 3200
282
+ },
283
+ {
284
+ "epoch": 0.71,
285
+ "grad_norm": 1.1799293756484985,
286
+ "learning_rate": 0.0001712923076923077,
287
+ "loss": 0.3687,
288
+ "step": 3300
289
+ },
290
+ {
291
+ "epoch": 0.73,
292
+ "grad_norm": 1.2787513732910156,
293
+ "learning_rate": 0.0001702666666666667,
294
+ "loss": 0.3997,
295
+ "step": 3400
296
+ },
297
+ {
298
+ "epoch": 0.75,
299
+ "grad_norm": 1.2793489694595337,
300
+ "learning_rate": 0.00016924102564102564,
301
+ "loss": 0.3936,
302
+ "step": 3500
303
+ },
304
+ {
305
+ "epoch": 0.75,
306
+ "eval_loss": 0.2866547703742981,
307
+ "eval_runtime": 90.8477,
308
+ "eval_samples_per_second": 11.007,
309
+ "eval_steps_per_second": 2.752,
310
+ "step": 3500
311
+ },
312
+ {
313
+ "epoch": 0.77,
314
+ "grad_norm": 0.7189435362815857,
315
+ "learning_rate": 0.0001682153846153846,
316
+ "loss": 0.4191,
317
+ "step": 3600
318
+ },
319
+ {
320
+ "epoch": 0.8,
321
+ "grad_norm": 0.9801158308982849,
322
+ "learning_rate": 0.0001671897435897436,
323
+ "loss": 0.3978,
324
+ "step": 3700
325
+ },
326
+ {
327
+ "epoch": 0.82,
328
+ "grad_norm": 1.41176438331604,
329
+ "learning_rate": 0.0001661641025641026,
330
+ "loss": 0.3762,
331
+ "step": 3800
332
+ },
333
+ {
334
+ "epoch": 0.84,
335
+ "grad_norm": 0.9064908027648926,
336
+ "learning_rate": 0.00016513846153846156,
337
+ "loss": 0.3746,
338
+ "step": 3900
339
+ },
340
+ {
341
+ "epoch": 0.86,
342
+ "grad_norm": 1.3439726829528809,
343
+ "learning_rate": 0.00016411282051282053,
344
+ "loss": 0.3823,
345
+ "step": 4000
346
+ },
347
+ {
348
+ "epoch": 0.86,
349
+ "eval_loss": 0.2893534004688263,
350
+ "eval_runtime": 90.8714,
351
+ "eval_samples_per_second": 11.005,
352
+ "eval_steps_per_second": 2.751,
353
+ "step": 4000
354
+ },
355
+ {
356
+ "epoch": 0.88,
357
+ "grad_norm": 1.6646331548690796,
358
+ "learning_rate": 0.00016308717948717948,
359
+ "loss": 0.4029,
360
+ "step": 4100
361
+ },
362
+ {
363
+ "epoch": 0.9,
364
+ "grad_norm": 0.9874048829078674,
365
+ "learning_rate": 0.00016206153846153845,
366
+ "loss": 0.3933,
367
+ "step": 4200
368
+ },
369
+ {
370
+ "epoch": 0.93,
371
+ "grad_norm": 1.0010713338851929,
372
+ "learning_rate": 0.00016103589743589745,
373
+ "loss": 0.41,
374
+ "step": 4300
375
+ },
376
+ {
377
+ "epoch": 0.95,
378
+ "grad_norm": 0.9607357978820801,
379
+ "learning_rate": 0.00016001025641025642,
380
+ "loss": 0.3659,
381
+ "step": 4400
382
+ },
383
+ {
384
+ "epoch": 0.97,
385
+ "grad_norm": 1.3652217388153076,
386
+ "learning_rate": 0.0001589846153846154,
387
+ "loss": 0.3794,
388
+ "step": 4500
389
+ },
390
+ {
391
+ "epoch": 0.97,
392
+ "eval_loss": 0.2667659819126129,
393
+ "eval_runtime": 90.9201,
394
+ "eval_samples_per_second": 10.999,
395
+ "eval_steps_per_second": 2.75,
396
+ "step": 4500
397
+ },
398
+ {
399
+ "epoch": 0.99,
400
+ "grad_norm": 1.056810736656189,
401
+ "learning_rate": 0.00015795897435897437,
402
+ "loss": 0.3878,
403
+ "step": 4600
404
+ },
405
+ {
406
+ "epoch": 1.01,
407
+ "grad_norm": 0.7765600085258484,
408
+ "learning_rate": 0.00015693333333333334,
409
+ "loss": 0.3396,
410
+ "step": 4700
411
+ },
412
+ {
413
+ "epoch": 1.03,
414
+ "grad_norm": 1.0664465427398682,
415
+ "learning_rate": 0.00015590769230769232,
416
+ "loss": 0.2813,
417
+ "step": 4800
418
+ },
419
+ {
420
+ "epoch": 1.05,
421
+ "grad_norm": 0.6342141628265381,
422
+ "learning_rate": 0.0001548820512820513,
423
+ "loss": 0.309,
424
+ "step": 4900
425
+ },
426
+ {
427
+ "epoch": 1.08,
428
+ "grad_norm": 1.1380507946014404,
429
+ "learning_rate": 0.00015385641025641026,
430
+ "loss": 0.2888,
431
+ "step": 5000
432
+ },
433
+ {
434
+ "epoch": 1.08,
435
+ "eval_loss": 0.27630186080932617,
436
+ "eval_runtime": 90.9762,
437
+ "eval_samples_per_second": 10.992,
438
+ "eval_steps_per_second": 2.748,
439
+ "step": 5000
440
+ },
441
+ {
442
+ "epoch": 1.1,
443
+ "grad_norm": 1.6043438911437988,
444
+ "learning_rate": 0.00015283076923076924,
445
+ "loss": 0.3836,
446
+ "step": 5100
447
+ },
448
+ {
449
+ "epoch": 1.12,
450
+ "grad_norm": 0.2961331307888031,
451
+ "learning_rate": 0.0001518051282051282,
452
+ "loss": 0.2964,
453
+ "step": 5200
454
+ },
455
+ {
456
+ "epoch": 1.14,
457
+ "grad_norm": 1.0106085538864136,
458
+ "learning_rate": 0.00015077948717948718,
459
+ "loss": 0.2837,
460
+ "step": 5300
461
+ },
462
+ {
463
+ "epoch": 1.16,
464
+ "grad_norm": 1.2187350988388062,
465
+ "learning_rate": 0.00014975384615384616,
466
+ "loss": 0.3093,
467
+ "step": 5400
468
+ },
469
+ {
470
+ "epoch": 1.18,
471
+ "grad_norm": 1.4018324613571167,
472
+ "learning_rate": 0.00014872820512820513,
473
+ "loss": 0.3029,
474
+ "step": 5500
475
+ },
476
+ {
477
+ "epoch": 1.18,
478
+ "eval_loss": 0.2620677351951599,
479
+ "eval_runtime": 90.8592,
480
+ "eval_samples_per_second": 11.006,
481
+ "eval_steps_per_second": 2.752,
482
+ "step": 5500
483
+ },
484
+ {
485
+ "epoch": 1.2,
486
+ "grad_norm": 0.8634820580482483,
487
+ "learning_rate": 0.00014771282051282051,
488
+ "loss": 0.3046,
489
+ "step": 5600
490
+ },
491
+ {
492
+ "epoch": 1.23,
493
+ "grad_norm": 0.6309552788734436,
494
+ "learning_rate": 0.0001466871794871795,
495
+ "loss": 0.3041,
496
+ "step": 5700
497
+ },
498
+ {
499
+ "epoch": 1.25,
500
+ "grad_norm": 1.2985124588012695,
501
+ "learning_rate": 0.00014566153846153846,
502
+ "loss": 0.312,
503
+ "step": 5800
504
+ },
505
+ {
506
+ "epoch": 1.27,
507
+ "grad_norm": 0.9580160975456238,
508
+ "learning_rate": 0.00014463589743589746,
509
+ "loss": 0.3306,
510
+ "step": 5900
511
+ },
512
+ {
513
+ "epoch": 1.29,
514
+ "grad_norm": 1.0316152572631836,
515
+ "learning_rate": 0.00014361025641025643,
516
+ "loss": 0.2979,
517
+ "step": 6000
518
+ },
519
+ {
520
+ "epoch": 1.29,
521
+ "eval_loss": 0.26443469524383545,
522
+ "eval_runtime": 90.9026,
523
+ "eval_samples_per_second": 11.001,
524
+ "eval_steps_per_second": 2.75,
525
+ "step": 6000
526
+ },
527
+ {
528
+ "epoch": 1.31,
529
+ "grad_norm": 1.9922102689743042,
530
+ "learning_rate": 0.00014258461538461538,
531
+ "loss": 0.3105,
532
+ "step": 6100
533
+ },
534
+ {
535
+ "epoch": 1.33,
536
+ "grad_norm": 1.274574875831604,
537
+ "learning_rate": 0.00014155897435897435,
538
+ "loss": 0.3174,
539
+ "step": 6200
540
+ },
541
+ {
542
+ "epoch": 1.36,
543
+ "grad_norm": 1.1152174472808838,
544
+ "learning_rate": 0.00014053333333333335,
545
+ "loss": 0.3094,
546
+ "step": 6300
547
+ },
548
+ {
549
+ "epoch": 1.38,
550
+ "grad_norm": 1.4428844451904297,
551
+ "learning_rate": 0.00013950769230769233,
552
+ "loss": 0.3136,
553
+ "step": 6400
554
+ },
555
+ {
556
+ "epoch": 1.4,
557
+ "grad_norm": 1.418609380722046,
558
+ "learning_rate": 0.0001384820512820513,
559
+ "loss": 0.3425,
560
+ "step": 6500
561
+ },
562
+ {
563
+ "epoch": 1.4,
564
+ "eval_loss": 0.299164742231369,
565
+ "eval_runtime": 90.9837,
566
+ "eval_samples_per_second": 10.991,
567
+ "eval_steps_per_second": 2.748,
568
+ "step": 6500
569
+ },
570
+ {
571
+ "epoch": 1.42,
572
+ "grad_norm": 1.309278130531311,
573
+ "learning_rate": 0.00013745641025641027,
574
+ "loss": 0.3318,
575
+ "step": 6600
576
+ },
577
+ {
578
+ "epoch": 1.44,
579
+ "grad_norm": 1.0984652042388916,
580
+ "learning_rate": 0.00013643076923076922,
581
+ "loss": 0.3221,
582
+ "step": 6700
583
+ },
584
+ {
585
+ "epoch": 1.46,
586
+ "grad_norm": 1.1776598691940308,
587
+ "learning_rate": 0.00013540512820512822,
588
+ "loss": 0.3151,
589
+ "step": 6800
590
+ },
591
+ {
592
+ "epoch": 1.48,
593
+ "grad_norm": 1.1536751985549927,
594
+ "learning_rate": 0.0001343794871794872,
595
+ "loss": 0.3471,
596
+ "step": 6900
597
+ },
598
+ {
599
+ "epoch": 1.51,
600
+ "grad_norm": 1.5731265544891357,
601
+ "learning_rate": 0.00013335384615384616,
602
+ "loss": 0.3342,
603
+ "step": 7000
604
+ },
605
+ {
606
+ "epoch": 1.51,
607
+ "eval_loss": 0.25467580556869507,
608
+ "eval_runtime": 90.9083,
609
+ "eval_samples_per_second": 11.0,
610
+ "eval_steps_per_second": 2.75,
611
+ "step": 7000
612
+ },
613
+ {
614
+ "epoch": 1.53,
615
+ "grad_norm": 1.5424981117248535,
616
+ "learning_rate": 0.00013233846153846155,
617
+ "loss": 0.3337,
618
+ "step": 7100
619
+ },
620
+ {
621
+ "epoch": 1.55,
622
+ "grad_norm": 1.2443273067474365,
623
+ "learning_rate": 0.00013131282051282052,
624
+ "loss": 0.2955,
625
+ "step": 7200
626
+ },
627
+ {
628
+ "epoch": 1.57,
629
+ "grad_norm": 0.7886701822280884,
630
+ "learning_rate": 0.0001302871794871795,
631
+ "loss": 0.3017,
632
+ "step": 7300
633
+ },
634
+ {
635
+ "epoch": 1.59,
636
+ "grad_norm": 1.6013621091842651,
637
+ "learning_rate": 0.00012926153846153847,
638
+ "loss": 0.2976,
639
+ "step": 7400
640
+ },
641
+ {
642
+ "epoch": 1.61,
643
+ "grad_norm": 1.495753288269043,
644
+ "learning_rate": 0.00012823589743589744,
645
+ "loss": 0.3086,
646
+ "step": 7500
647
+ },
648
+ {
649
+ "epoch": 1.61,
650
+ "eval_loss": 0.25845155119895935,
651
+ "eval_runtime": 90.8943,
652
+ "eval_samples_per_second": 11.002,
653
+ "eval_steps_per_second": 2.75,
654
+ "step": 7500
655
+ },
656
+ {
657
+ "epoch": 1.64,
658
+ "grad_norm": 1.181015968322754,
659
+ "learning_rate": 0.00012721025641025641,
660
+ "loss": 0.2657,
661
+ "step": 7600
662
+ },
663
+ {
664
+ "epoch": 1.66,
665
+ "grad_norm": 1.2074403762817383,
666
+ "learning_rate": 0.0001261846153846154,
667
+ "loss": 0.3149,
668
+ "step": 7700
669
+ },
670
+ {
671
+ "epoch": 1.68,
672
+ "grad_norm": 1.216676950454712,
673
+ "learning_rate": 0.00012515897435897436,
674
+ "loss": 0.2999,
675
+ "step": 7800
676
+ },
677
+ {
678
+ "epoch": 1.7,
679
+ "grad_norm": 1.8093730211257935,
680
+ "learning_rate": 0.00012413333333333333,
681
+ "loss": 0.3144,
682
+ "step": 7900
683
+ },
684
+ {
685
+ "epoch": 1.72,
686
+ "grad_norm": 3.7325637340545654,
687
+ "learning_rate": 0.00012310769230769233,
688
+ "loss": 0.3326,
689
+ "step": 8000
690
+ },
691
+ {
692
+ "epoch": 1.72,
693
+ "eval_loss": 0.23783066868782043,
694
+ "eval_runtime": 90.8877,
695
+ "eval_samples_per_second": 11.003,
696
+ "eval_steps_per_second": 2.751,
697
+ "step": 8000
698
+ },
699
+ {
700
+ "epoch": 1.74,
701
+ "grad_norm": 0.6969020366668701,
702
+ "learning_rate": 0.00012208205128205128,
703
+ "loss": 0.2935,
704
+ "step": 8100
705
+ },
706
+ {
707
+ "epoch": 1.76,
708
+ "grad_norm": 2.1927125453948975,
709
+ "learning_rate": 0.00012105641025641025,
710
+ "loss": 0.3091,
711
+ "step": 8200
712
+ },
713
+ {
714
+ "epoch": 1.79,
715
+ "grad_norm": 1.8521186113357544,
716
+ "learning_rate": 0.00012003076923076924,
717
+ "loss": 0.2517,
718
+ "step": 8300
719
+ },
720
+ {
721
+ "epoch": 1.81,
722
+ "grad_norm": 1.5349504947662354,
723
+ "learning_rate": 0.00011900512820512821,
724
+ "loss": 0.2794,
725
+ "step": 8400
726
+ },
727
+ {
728
+ "epoch": 1.83,
729
+ "grad_norm": 0.6325456500053406,
730
+ "learning_rate": 0.00011797948717948718,
731
+ "loss": 0.2912,
732
+ "step": 8500
733
+ },
734
+ {
735
+ "epoch": 1.83,
736
+ "eval_loss": 0.23375801742076874,
737
+ "eval_runtime": 90.8478,
738
+ "eval_samples_per_second": 11.007,
739
+ "eval_steps_per_second": 2.752,
740
+ "step": 8500
741
+ },
742
+ {
743
+ "epoch": 1.85,
744
+ "grad_norm": 1.615515112876892,
745
+ "learning_rate": 0.00011695384615384617,
746
+ "loss": 0.2953,
747
+ "step": 8600
748
+ },
749
+ {
750
+ "epoch": 1.87,
751
+ "grad_norm": 1.2424674034118652,
752
+ "learning_rate": 0.00011592820512820513,
753
+ "loss": 0.3047,
754
+ "step": 8700
755
+ },
756
+ {
757
+ "epoch": 1.89,
758
+ "grad_norm": 1.2125675678253174,
759
+ "learning_rate": 0.0001149025641025641,
760
+ "loss": 0.3209,
761
+ "step": 8800
762
+ },
763
+ {
764
+ "epoch": 1.91,
765
+ "grad_norm": 1.6464908123016357,
766
+ "learning_rate": 0.00011387692307692308,
767
+ "loss": 0.3214,
768
+ "step": 8900
769
+ },
770
+ {
771
+ "epoch": 1.94,
772
+ "grad_norm": 1.300310730934143,
773
+ "learning_rate": 0.00011285128205128206,
774
+ "loss": 0.2965,
775
+ "step": 9000
776
+ },
777
+ {
778
+ "epoch": 1.94,
779
+ "eval_loss": 0.2334287166595459,
780
+ "eval_runtime": 90.9451,
781
+ "eval_samples_per_second": 10.996,
782
+ "eval_steps_per_second": 2.749,
783
+ "step": 9000
784
+ },
785
+ {
786
+ "epoch": 1.96,
787
+ "grad_norm": 1.7211843729019165,
788
+ "learning_rate": 0.00011182564102564104,
789
+ "loss": 0.2813,
790
+ "step": 9100
791
+ },
792
+ {
793
+ "epoch": 1.98,
794
+ "grad_norm": 1.5777404308319092,
795
+ "learning_rate": 0.00011080000000000001,
796
+ "loss": 0.2951,
797
+ "step": 9200
798
+ },
799
+ {
800
+ "epoch": 2.0,
801
+ "grad_norm": 1.3048077821731567,
802
+ "learning_rate": 0.00010977435897435897,
803
+ "loss": 0.301,
804
+ "step": 9300
805
+ },
806
+ {
807
+ "epoch": 2.02,
808
+ "grad_norm": 1.1753878593444824,
809
+ "learning_rate": 0.00010874871794871794,
810
+ "loss": 0.1944,
811
+ "step": 9400
812
+ },
813
+ {
814
+ "epoch": 2.04,
815
+ "grad_norm": 0.8378590941429138,
816
+ "learning_rate": 0.00010772307692307693,
817
+ "loss": 0.2041,
818
+ "step": 9500
819
+ },
820
+ {
821
+ "epoch": 2.04,
822
+ "eval_loss": 0.2733120024204254,
823
+ "eval_runtime": 90.9249,
824
+ "eval_samples_per_second": 10.998,
825
+ "eval_steps_per_second": 2.75,
826
+ "step": 9500
827
+ },
828
+ {
829
+ "epoch": 2.07,
830
+ "grad_norm": 1.4123268127441406,
831
+ "learning_rate": 0.0001066974358974359,
832
+ "loss": 0.2206,
833
+ "step": 9600
834
+ },
835
+ {
836
+ "epoch": 2.09,
837
+ "grad_norm": 1.5923714637756348,
838
+ "learning_rate": 0.00010567179487179489,
839
+ "loss": 0.2331,
840
+ "step": 9700
841
+ },
842
+ {
843
+ "epoch": 2.11,
844
+ "grad_norm": 2.31000018119812,
845
+ "learning_rate": 0.00010465641025641026,
846
+ "loss": 0.2564,
847
+ "step": 9800
848
+ },
849
+ {
850
+ "epoch": 2.13,
851
+ "grad_norm": 1.4770272970199585,
852
+ "learning_rate": 0.00010363076923076925,
853
+ "loss": 0.2009,
854
+ "step": 9900
855
+ },
856
+ {
857
+ "epoch": 2.15,
858
+ "grad_norm": 1.5393586158752441,
859
+ "learning_rate": 0.00010260512820512822,
860
+ "loss": 0.2168,
861
+ "step": 10000
862
+ },
863
+ {
864
+ "epoch": 2.15,
865
+ "eval_loss": 0.24773281812667847,
866
+ "eval_runtime": 90.901,
867
+ "eval_samples_per_second": 11.001,
868
+ "eval_steps_per_second": 2.75,
869
+ "step": 10000
870
+ },
871
+ {
872
+ "epoch": 2.17,
873
+ "grad_norm": 2.3399605751037598,
874
+ "learning_rate": 0.00010157948717948718,
875
+ "loss": 0.2275,
876
+ "step": 10100
877
+ },
878
+ {
879
+ "epoch": 2.19,
880
+ "grad_norm": 1.417143702507019,
881
+ "learning_rate": 0.00010055384615384615,
882
+ "loss": 0.2093,
883
+ "step": 10200
884
+ },
885
+ {
886
+ "epoch": 2.22,
887
+ "grad_norm": 1.7041810750961304,
888
+ "learning_rate": 9.952820512820513e-05,
889
+ "loss": 0.2105,
890
+ "step": 10300
891
+ },
892
+ {
893
+ "epoch": 2.24,
894
+ "grad_norm": 3.7192060947418213,
895
+ "learning_rate": 9.850256410256411e-05,
896
+ "loss": 0.2078,
897
+ "step": 10400
898
+ },
899
+ {
900
+ "epoch": 2.26,
901
+ "grad_norm": 0.7868184447288513,
902
+ "learning_rate": 9.747692307692307e-05,
903
+ "loss": 0.2058,
904
+ "step": 10500
905
+ },
906
+ {
907
+ "epoch": 2.26,
908
+ "eval_loss": 0.22978341579437256,
909
+ "eval_runtime": 90.9187,
910
+ "eval_samples_per_second": 10.999,
911
+ "eval_steps_per_second": 2.75,
912
+ "step": 10500
913
+ },
914
+ {
915
+ "epoch": 2.28,
916
+ "grad_norm": 2.572187662124634,
917
+ "learning_rate": 9.645128205128206e-05,
918
+ "loss": 0.2304,
919
+ "step": 10600
920
+ },
921
+ {
922
+ "epoch": 2.3,
923
+ "grad_norm": 1.3671247959136963,
924
+ "learning_rate": 9.542564102564103e-05,
925
+ "loss": 0.1962,
926
+ "step": 10700
927
+ },
928
+ {
929
+ "epoch": 2.32,
930
+ "grad_norm": 2.6237735748291016,
931
+ "learning_rate": 9.44e-05,
932
+ "loss": 0.2201,
933
+ "step": 10800
934
+ },
935
+ {
936
+ "epoch": 2.35,
937
+ "grad_norm": 1.1776219606399536,
938
+ "learning_rate": 9.337435897435898e-05,
939
+ "loss": 0.1972,
940
+ "step": 10900
941
+ },
942
+ {
943
+ "epoch": 2.37,
944
+ "grad_norm": 1.236425757408142,
945
+ "learning_rate": 9.234871794871795e-05,
946
+ "loss": 0.2126,
947
+ "step": 11000
948
+ },
949
+ {
950
+ "epoch": 2.37,
951
+ "eval_loss": 0.24023191630840302,
952
+ "eval_runtime": 90.9406,
953
+ "eval_samples_per_second": 10.996,
954
+ "eval_steps_per_second": 2.749,
955
+ "step": 11000
956
+ },
957
+ {
958
+ "epoch": 2.39,
959
+ "grad_norm": 1.0826618671417236,
960
+ "learning_rate": 9.132307692307692e-05,
961
+ "loss": 0.2168,
962
+ "step": 11100
963
+ },
964
+ {
965
+ "epoch": 2.41,
966
+ "grad_norm": 0.8385189771652222,
967
+ "learning_rate": 9.02974358974359e-05,
968
+ "loss": 0.2029,
969
+ "step": 11200
970
+ },
971
+ {
972
+ "epoch": 2.43,
973
+ "grad_norm": 0.7595863342285156,
974
+ "learning_rate": 8.927179487179488e-05,
975
+ "loss": 0.1902,
976
+ "step": 11300
977
+ },
978
+ {
979
+ "epoch": 2.45,
980
+ "grad_norm": 2.0246148109436035,
981
+ "learning_rate": 8.824615384615384e-05,
982
+ "loss": 0.2276,
983
+ "step": 11400
984
+ },
985
+ {
986
+ "epoch": 2.47,
987
+ "grad_norm": 1.2247196435928345,
988
+ "learning_rate": 8.722051282051283e-05,
989
+ "loss": 0.2,
990
+ "step": 11500
991
+ },
992
+ {
993
+ "epoch": 2.47,
994
+ "eval_loss": 0.25648975372314453,
995
+ "eval_runtime": 90.8579,
996
+ "eval_samples_per_second": 11.006,
997
+ "eval_steps_per_second": 2.752,
998
+ "step": 11500
999
+ },
1000
+ {
1001
+ "epoch": 2.5,
1002
+ "grad_norm": 1.0143483877182007,
1003
+ "learning_rate": 8.61948717948718e-05,
1004
+ "loss": 0.2179,
1005
+ "step": 11600
1006
+ },
1007
+ {
1008
+ "epoch": 2.52,
1009
+ "grad_norm": 2.7020885944366455,
1010
+ "learning_rate": 8.516923076923076e-05,
1011
+ "loss": 0.2214,
1012
+ "step": 11700
1013
+ },
1014
+ {
1015
+ "epoch": 2.54,
1016
+ "grad_norm": 1.8533117771148682,
1017
+ "learning_rate": 8.414358974358975e-05,
1018
+ "loss": 0.2074,
1019
+ "step": 11800
1020
+ },
1021
+ {
1022
+ "epoch": 2.56,
1023
+ "grad_norm": 1.7365753650665283,
1024
+ "learning_rate": 8.311794871794872e-05,
1025
+ "loss": 0.2396,
1026
+ "step": 11900
1027
+ },
1028
+ {
1029
+ "epoch": 2.58,
1030
+ "grad_norm": 0.8160982131958008,
1031
+ "learning_rate": 8.209230769230771e-05,
1032
+ "loss": 0.1786,
1033
+ "step": 12000
1034
+ },
1035
+ {
1036
+ "epoch": 2.58,
1037
+ "eval_loss": 0.2251870185136795,
1038
+ "eval_runtime": 90.8167,
1039
+ "eval_samples_per_second": 11.011,
1040
+ "eval_steps_per_second": 2.753,
1041
+ "step": 12000
1042
+ }
1043
+ ],
1044
+ "logging_steps": 100,
1045
+ "max_steps": 20000,
1046
+ "num_input_tokens_seen": 0,
1047
+ "num_train_epochs": 5,
1048
+ "save_steps": 500,
1049
+ "total_flos": 3.86418819603628e+17,
1050
+ "train_batch_size": 4,
1051
+ "trial_name": null,
1052
+ "trial_params": null
1053
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1318554bac5c9740d383c017d6e24e057c161337444188e13c83dba33fc00e24
3
+ size 4920