bourdoiscatie
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ metrics:
|
|
7 |
- f1
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
-
- name:
|
11 |
results: []
|
12 |
datasets:
|
13 |
- CATIE-AQ/frenchNER_4entities
|
@@ -21,11 +21,11 @@ co2_eq_emissions: 20
|
|
21 |
---
|
22 |
|
23 |
|
24 |
-
#
|
25 |
|
26 |
## Model Description
|
27 |
|
28 |
-
We present **
|
29 |
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
|
30 |
There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
|
31 |
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
@@ -89,6 +89,60 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
|
|
89 |
|
90 |
### frenchNER_4entities
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
<table>
|
93 |
<thead>
|
94 |
<tr>
|
@@ -159,8 +213,36 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
|
|
159 |
<td><br>0.989</td>
|
160 |
<td><br>0.976</td>
|
161 |
</tr>
|
162 |
-
|
163 |
-
<td rowspan="3"><br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
<td><br>Precision</td>
|
165 |
<td><br>0.973</td>
|
166 |
<td><br>0.951</td>
|
@@ -187,14 +269,95 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
|
|
187 |
<td><br><b>0.993</b></td>
|
188 |
<td><br><b>0.984</b></td>
|
189 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
</tbody>
|
191 |
</table>
|
192 |
-
|
193 |
|
194 |
In detail:
|
195 |
|
196 |
### multiconer
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
<table>
|
199 |
<thead>
|
200 |
<tr>
|
@@ -266,7 +429,35 @@ In detail:
|
|
266 |
<td><br>0.881</td>
|
267 |
</tr>
|
268 |
<tr>
|
269 |
-
<td rowspan="3"><br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
<td><br>Precision</td>
|
271 |
<td><br>0.954</td>
|
272 |
<td><br>0.893</td>
|
@@ -293,11 +484,94 @@ In detail:
|
|
293 |
<td><br><b>0.977</b></td>
|
294 |
<td><br><b>0.954</b></td>
|
295 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
</tbody>
|
297 |
</table>
|
|
|
|
|
298 |
|
299 |
### multinerd
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
<table>
|
302 |
<thead>
|
303 |
<tr>
|
@@ -369,8 +643,36 @@ In detail:
|
|
369 |
<td><br>0.967</td>
|
370 |
</tr>
|
371 |
<tr>
|
372 |
-
<td rowspan="3"><br>
|
373 |
<td><br>Precision</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
<td><br>0.976</td>
|
375 |
<td><br>0.961</td>
|
376 |
<td><br>0.91</td>
|
@@ -396,12 +698,93 @@ In detail:
|
|
396 |
<td><br><b>0.992</b></td>
|
397 |
<td><br><b>0.983</b></td>
|
398 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
</tbody>
|
400 |
</table>
|
401 |
-
|
402 |
|
403 |
### wikiner
|
404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
<table>
|
406 |
<thead>
|
407 |
<tr>
|
@@ -473,7 +856,35 @@ In detail:
|
|
473 |
<td><br>0.991</td>
|
474 |
</tr>
|
475 |
<tr>
|
476 |
-
<td rowspan="3"><br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
<td><br>Precision</td>
|
478 |
<td><br>0.970</td>
|
479 |
<td><br>0.944</td>
|
@@ -500,9 +911,37 @@ In detail:
|
|
500 |
<td><br>0.996</td>
|
501 |
<td><br>0.986</td>
|
502 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
</tbody>
|
504 |
</table>
|
505 |
-
|
506 |
|
507 |
## Usage
|
508 |
### Code
|
@@ -510,7 +949,7 @@ In detail:
|
|
510 |
```python
|
511 |
from transformers import pipeline
|
512 |
|
513 |
-
ner = pipeline('question-answering', model='CATIE-AQ/
|
514 |
|
515 |
results = ner(
|
516 |
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
@@ -576,7 +1015,7 @@ print(result)
|
|
576 |
```
|
577 |
|
578 |
### Try it through Space
|
579 |
-
A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/
|
580 |
|
581 |
|
582 |
## Training procedure
|
|
|
7 |
- f1
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
+
- name: NERmembert-base-4entities
|
11 |
results: []
|
12 |
datasets:
|
13 |
- CATIE-AQ/frenchNER_4entities
|
|
|
21 |
---
|
22 |
|
23 |
|
24 |
+
# NERmembert-base-4entities
|
25 |
|
26 |
## Model Description
|
27 |
|
28 |
+
We present **NERmembert-base-4entities**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
|
29 |
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
|
30 |
There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
|
31 |
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
|
|
89 |
|
90 |
### frenchNER_4entities
|
91 |
|
92 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
93 |
+
|
94 |
+
<table>
|
95 |
+
<thead>
|
96 |
+
<tr>
|
97 |
+
<th><br>Model</th>
|
98 |
+
<th><br>PER</th>
|
99 |
+
<th><br>LOC</th>
|
100 |
+
<th><br>ORG</th>
|
101 |
+
<th><br>MISC</th>
|
102 |
+
</tr>
|
103 |
+
</thead>
|
104 |
+
<tbody>
|
105 |
+
<tr>
|
106 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
107 |
+
<td><br>0.971</td>
|
108 |
+
<td><br>0.947</td>
|
109 |
+
<td><br>0.902</td>
|
110 |
+
<td><br>0.663</td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
114 |
+
<td><br>0.974</td>
|
115 |
+
<td><br>0.948</td>
|
116 |
+
<td><br>0.892</td>
|
117 |
+
<td><br>0.658</td>
|
118 |
+
</tr>
|
119 |
+
<tr>
|
120 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
121 |
+
<td><br>A</td>
|
122 |
+
<td><br>B</td>
|
123 |
+
<td><br>C</td>
|
124 |
+
<td><br>0</td>
|
125 |
+
</tr>
|
126 |
+
<tr>
|
127 |
+
<td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
|
128 |
+
<td><br><b>0.978</b></td>
|
129 |
+
<td><br><b>0.958</b></td>
|
130 |
+
<td><br><b>0.903</b></td>
|
131 |
+
<td><br><b>0.814</b></td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
135 |
+
<td><br>A</td>
|
136 |
+
<td><br>B</td>
|
137 |
+
<td><br>C</td>
|
138 |
+
<td><br>D</td>
|
139 |
+
</tr>
|
140 |
+
</tbody>
|
141 |
+
</table>
|
142 |
+
|
143 |
+
|
144 |
+
<details>
|
145 |
+
<summary>Full results</summary>
|
146 |
<table>
|
147 |
<thead>
|
148 |
<tr>
|
|
|
213 |
<td><br>0.989</td>
|
214 |
<td><br>0.976</td>
|
215 |
</tr>
|
216 |
+
<tr>
|
217 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
218 |
+
<td><br>Precision</td>
|
219 |
+
<td><br>A</td>
|
220 |
+
<td><br>B</td>
|
221 |
+
<td><br>C</td>
|
222 |
+
<td><br>0</td>
|
223 |
+
<td><br>X</td>
|
224 |
+
<td><br>X</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td><br>Recall</td>
|
228 |
+
<td><br>A</td>
|
229 |
+
<td><br>B</td>
|
230 |
+
<td><br>C</td>
|
231 |
+
<td><br>0</td>
|
232 |
+
<td><br>X</td>
|
233 |
+
<td><br>X</td>
|
234 |
+
</tr>
|
235 |
+
<tr>
|
236 |
+
<td>F1</td>
|
237 |
+
<td><br>A</td>
|
238 |
+
<td><br>B</td>
|
239 |
+
<td><br>C</td>
|
240 |
+
<td><br>0</td>
|
241 |
+
<td><br>X</td>
|
242 |
+
<td><br>X</td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
|
246 |
<td><br>Precision</td>
|
247 |
<td><br>0.973</td>
|
248 |
<td><br>0.951</td>
|
|
|
269 |
<td><br><b>0.993</b></td>
|
270 |
<td><br><b>0.984</b></td>
|
271 |
</tr>
|
272 |
+
<tr>
|
273 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
274 |
+
<td><br>Precision</td>
|
275 |
+
<td><br>A</td>
|
276 |
+
<td><br>B</td>
|
277 |
+
<td><br>C</td>
|
278 |
+
<td><br>D</td>
|
279 |
+
<td><br>E</td>
|
280 |
+
<td><br>F</td>
|
281 |
+
</tr>
|
282 |
+
<tr>
|
283 |
+
<td><br>Recall</td>
|
284 |
+
<td><br>A</td>
|
285 |
+
<td><br>B</td>
|
286 |
+
<td><br>C</td>
|
287 |
+
<td><br>D</td>
|
288 |
+
<td><br>E</td>
|
289 |
+
<td><br>F</td>
|
290 |
+
</tr>
|
291 |
+
<tr>
|
292 |
+
<td>F1</td>
|
293 |
+
<td><br>A</td>
|
294 |
+
<td><br>B</td>
|
295 |
+
<td><br>C</td>
|
296 |
+
<td><br>D</td>
|
297 |
+
<td><br>E</td>
|
298 |
+
<td><br>F</td>
|
299 |
+
</tr>
|
300 |
</tbody>
|
301 |
</table>
|
302 |
+
</details>
|
303 |
|
304 |
In detail:
|
305 |
|
306 |
### multiconer
|
307 |
|
308 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
309 |
+
|
310 |
+
<table>
|
311 |
+
<thead>
|
312 |
+
<tr>
|
313 |
+
<th><br>Model</th>
|
314 |
+
<th><br>PER</th>
|
315 |
+
<th><br>LOC</th>
|
316 |
+
<th><br>ORG</th>
|
317 |
+
<th><br>MISC</th>
|
318 |
+
</tr>
|
319 |
+
</thead>
|
320 |
+
<tbody>
|
321 |
+
<tr>
|
322 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
323 |
+
<td><br>0.940</td>
|
324 |
+
<td><br>0.761</td>
|
325 |
+
<td><br>0.723</td>
|
326 |
+
<td><br>0.560</td>
|
327 |
+
</tr>
|
328 |
+
<tr>
|
329 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
330 |
+
<td><br>0.921</td>
|
331 |
+
<td><br>0.748</td>
|
332 |
+
<td><br>0.694</td>
|
333 |
+
<td><br>0.530</td>
|
334 |
+
</tr>
|
335 |
+
<tr>
|
336 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
337 |
+
<td><br>A</td>
|
338 |
+
<td><br>B</td>
|
339 |
+
<td><br>C</td>
|
340 |
+
<td><br>0</td>
|
341 |
+
</tr>
|
342 |
+
<tr>
|
343 |
+
<td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
|
344 |
+
<td><br><b>0.960</b></td>
|
345 |
+
<td><br><b>0.890</b></td>
|
346 |
+
<td><br><b>0.867</b></td>
|
347 |
+
<td><br><b>0.852</b></td>
|
348 |
+
</tr>
|
349 |
+
<tr>
|
350 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
351 |
+
<td><br>A</td>
|
352 |
+
<td><br>B</td>
|
353 |
+
<td><br>C</td>
|
354 |
+
<td><br>D</td>
|
355 |
+
</tr>
|
356 |
+
</tbody>
|
357 |
+
</table>
|
358 |
+
|
359 |
+
<details>
|
360 |
+
<summary>Full results</summary>
|
361 |
<table>
|
362 |
<thead>
|
363 |
<tr>
|
|
|
429 |
<td><br>0.881</td>
|
430 |
</tr>
|
431 |
<tr>
|
432 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
433 |
+
<td><br>Precision</td>
|
434 |
+
<td><br>A</td>
|
435 |
+
<td><br>B</td>
|
436 |
+
<td><br>C</td>
|
437 |
+
<td><br>0</td>
|
438 |
+
<td><br>X</td>
|
439 |
+
<td><br>X</td>
|
440 |
+
</tr>
|
441 |
+
<tr>
|
442 |
+
<td><br>Recall</td>
|
443 |
+
<td><br>A</td>
|
444 |
+
<td><br>B</td>
|
445 |
+
<td><br>C</td>
|
446 |
+
<td><br>0</td>
|
447 |
+
<td><br>X</td>
|
448 |
+
<td><br>X</td>
|
449 |
+
</tr>
|
450 |
+
<tr>
|
451 |
+
<td>F1</td>
|
452 |
+
<td><br>A</td>
|
453 |
+
<td><br>B</td>
|
454 |
+
<td><br>C</td>
|
455 |
+
<td><br>0</td>
|
456 |
+
<td><br>X</td>
|
457 |
+
<td><br>X</td>
|
458 |
+
</tr>
|
459 |
+
<tr>
|
460 |
+
<td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
|
461 |
<td><br>Precision</td>
|
462 |
<td><br>0.954</td>
|
463 |
<td><br>0.893</td>
|
|
|
484 |
<td><br><b>0.977</b></td>
|
485 |
<td><br><b>0.954</b></td>
|
486 |
</tr>
|
487 |
+
<tr>
|
488 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
489 |
+
<td><br>Precision</td>
|
490 |
+
<td><br>A</td>
|
491 |
+
<td><br>B</td>
|
492 |
+
<td><br>C</td>
|
493 |
+
<td><br>D</td>
|
494 |
+
<td><br>E</td>
|
495 |
+
<td><br>F</td>
|
496 |
+
</tr>
|
497 |
+
<tr>
|
498 |
+
<td><br>Recall</td>
|
499 |
+
<td><br>A</td>
|
500 |
+
<td><br>B</td>
|
501 |
+
<td><br>C</td>
|
502 |
+
<td><br>D</td>
|
503 |
+
<td><br>E</td>
|
504 |
+
<td><br>F</td>
|
505 |
+
</tr>
|
506 |
+
<tr>
|
507 |
+
<td>F1</td>
|
508 |
+
<td><br>A</td>
|
509 |
+
<td><br>B</td>
|
510 |
+
<td><br>C</td>
|
511 |
+
<td><br>D</td>
|
512 |
+
<td><br>E</td>
|
513 |
+
<td><br>F</td>
|
514 |
+
</tr>
|
515 |
</tbody>
|
516 |
</table>
|
517 |
+
</details>
|
518 |
+
|
519 |
|
520 |
### multinerd
|
521 |
|
522 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
523 |
+
|
524 |
+
<table>
|
525 |
+
<thead>
|
526 |
+
<tr>
|
527 |
+
<th><br>Model</th>
|
528 |
+
<th><br>PER</th>
|
529 |
+
<th><br>LOC</th>
|
530 |
+
<th><br>ORG</th>
|
531 |
+
<th><br>MISC</th>
|
532 |
+
</tr>
|
533 |
+
</thead>
|
534 |
+
<tbody>
|
535 |
+
<tr>
|
536 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
537 |
+
<td><br>0.962</td>
|
538 |
+
<td><br>0.934</td>
|
539 |
+
<td><br>0.888</td>
|
540 |
+
<td><br>0.419</td>
|
541 |
+
</tr>
|
542 |
+
<tr>
|
543 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
544 |
+
<td><br>0.972</td>
|
545 |
+
<td><br>0.938</td>
|
546 |
+
<td><br>0.884</td>
|
547 |
+
<td><br>0.430</td>
|
548 |
+
</tr>
|
549 |
+
<tr>
|
550 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
551 |
+
<td><br>A</td>
|
552 |
+
<td><br>B</td>
|
553 |
+
<td><br>C</td>
|
554 |
+
<td><br>0</td>
|
555 |
+
</tr>
|
556 |
+
<tr>
|
557 |
+
<td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
|
558 |
+
<td><br><b>0.985</b></td>
|
559 |
+
<td><br><b>0.973</b></td>
|
560 |
+
<td><br><b>0.938</b></td>
|
561 |
+
<td><br><b>0.770</b></td>
|
562 |
+
</tr>
|
563 |
+
<tr>
|
564 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
565 |
+
<td><br>A</td>
|
566 |
+
<td><br>B</td>
|
567 |
+
<td><br>C</td>
|
568 |
+
<td><br>D</td>
|
569 |
+
</tr>
|
570 |
+
</tbody>
|
571 |
+
</table>
|
572 |
+
|
573 |
+
<details>
|
574 |
+
<summary>Full results</summary>
|
575 |
<table>
|
576 |
<thead>
|
577 |
<tr>
|
|
|
643 |
<td><br>0.967</td>
|
644 |
</tr>
|
645 |
<tr>
|
646 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
647 |
<td><br>Precision</td>
|
648 |
+
<td><br>A</td>
|
649 |
+
<td><br>B</td>
|
650 |
+
<td><br>C</td>
|
651 |
+
<td><br>0</td>
|
652 |
+
<td><br>X</td>
|
653 |
+
<td><br>X</td>
|
654 |
+
</tr>
|
655 |
+
<tr>
|
656 |
+
<td><br>Recall</td>
|
657 |
+
<td><br>A</td>
|
658 |
+
<td><br>B</td>
|
659 |
+
<td><br>C</td>
|
660 |
+
<td><br>0</td>
|
661 |
+
<td><br>X</td>
|
662 |
+
<td><br>X</td>
|
663 |
+
</tr>
|
664 |
+
<tr>
|
665 |
+
<td>F1</td>
|
666 |
+
<td><br>A</td>
|
667 |
+
<td><br>B</td>
|
668 |
+
<td><br>C</td>
|
669 |
+
<td><br>0</td>
|
670 |
+
<td><br>X</td>
|
671 |
+
<td><br>X</td>
|
672 |
+
</tr>
|
673 |
+
<tr>
|
674 |
+
<td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
|
675 |
+
<td><br>Precision</td>
|
676 |
<td><br>0.976</td>
|
677 |
<td><br>0.961</td>
|
678 |
<td><br>0.91</td>
|
|
|
698 |
<td><br><b>0.992</b></td>
|
699 |
<td><br><b>0.983</b></td>
|
700 |
</tr>
|
701 |
+
<tr>
|
702 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
703 |
+
<td><br>Precision</td>
|
704 |
+
<td><br>A</td>
|
705 |
+
<td><br>B</td>
|
706 |
+
<td><br>C</td>
|
707 |
+
<td><br>D</td>
|
708 |
+
<td><br>E</td>
|
709 |
+
<td><br>F</td>
|
710 |
+
</tr>
|
711 |
+
<tr>
|
712 |
+
<td><br>Recall</td>
|
713 |
+
<td><br>A</td>
|
714 |
+
<td><br>B</td>
|
715 |
+
<td><br>C</td>
|
716 |
+
<td><br>D</td>
|
717 |
+
<td><br>E</td>
|
718 |
+
<td><br>F</td>
|
719 |
+
</tr>
|
720 |
+
<tr>
|
721 |
+
<td>F1</td>
|
722 |
+
<td><br>A</td>
|
723 |
+
<td><br>B</td>
|
724 |
+
<td><br>C</td>
|
725 |
+
<td><br>D</td>
|
726 |
+
<td><br>E</td>
|
727 |
+
<td><br>F</td>
|
728 |
+
</tr>
|
729 |
</tbody>
|
730 |
</table>
|
731 |
+
</details>
|
732 |
|
733 |
### wikiner
|
734 |
|
735 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
736 |
+
|
737 |
+
<table>
|
738 |
+
<thead>
|
739 |
+
<tr>
|
740 |
+
<th><br>Model</th>
|
741 |
+
<th><br>PER</th>
|
742 |
+
<th><br>LOC</th>
|
743 |
+
<th><br>ORG</th>
|
744 |
+
<th><br>MISC</th>
|
745 |
+
</tr>
|
746 |
+
</thead>
|
747 |
+
<tbody>
|
748 |
+
<tr>
|
749 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
750 |
+
<td><br><b>0.986</b></td>
|
751 |
+
<td><br><b>0.966</b></td>
|
752 |
+
<td><br><b>0.938</b></td>
|
753 |
+
<td><br><b>0.938</b></td>
|
754 |
+
</tr>
|
755 |
+
<tr>
|
756 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
757 |
+
<td><br>0.983</td>
|
758 |
+
<td><br>0.964</td>
|
759 |
+
<td><br>0.925</td>
|
760 |
+
<td><br>0.926</td>
|
761 |
+
</tr>
|
762 |
+
<tr>
|
763 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
764 |
+
<td><br>A</td>
|
765 |
+
<td><br>B</td>
|
766 |
+
<td><br>C</td>
|
767 |
+
<td><br>0</td>
|
768 |
+
</tr>
|
769 |
+
<tr>
|
770 |
+
<td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
|
771 |
+
<td><br>0.970</td>
|
772 |
+
<td><br>0.945</td>
|
773 |
+
<td><br>0.876</td>
|
774 |
+
<td><br>0.872</td>
|
775 |
+
</tr>
|
776 |
+
<tr>
|
777 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
778 |
+
<td><br>A</td>
|
779 |
+
<td><br>B</td>
|
780 |
+
<td><br>C</td>
|
781 |
+
<td><br>D</td>
|
782 |
+
</tr>
|
783 |
+
</tbody>
|
784 |
+
</table>
|
785 |
+
|
786 |
+
<details>
|
787 |
+
<summary>Full results</summary>
|
788 |
<table>
|
789 |
<thead>
|
790 |
<tr>
|
|
|
856 |
<td><br>0.991</td>
|
857 |
</tr>
|
858 |
<tr>
|
859 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
860 |
+
<td><br>Precision</td>
|
861 |
+
<td><br>A</td>
|
862 |
+
<td><br>B</td>
|
863 |
+
<td><br>C</td>
|
864 |
+
<td><br>0</td>
|
865 |
+
<td><br>X</td>
|
866 |
+
<td><br>X</td>
|
867 |
+
</tr>
|
868 |
+
<tr>
|
869 |
+
<td><br>Recall</td>
|
870 |
+
<td><br>A</td>
|
871 |
+
<td><br>B</td>
|
872 |
+
<td><br>C</td>
|
873 |
+
<td><br>0</td>
|
874 |
+
<td><br>X</td>
|
875 |
+
<td><br>X</td>
|
876 |
+
</tr>
|
877 |
+
<tr>
|
878 |
+
<td>F1</td>
|
879 |
+
<td><br>A</td>
|
880 |
+
<td><br>B</td>
|
881 |
+
<td><br>C</td>
|
882 |
+
<td><br>0</td>
|
883 |
+
<td><br>X</td>
|
884 |
+
<td><br>X</td>
|
885 |
+
</tr>
|
886 |
+
<tr>
|
887 |
+
<td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
|
888 |
<td><br>Precision</td>
|
889 |
<td><br>0.970</td>
|
890 |
<td><br>0.944</td>
|
|
|
911 |
<td><br>0.996</td>
|
912 |
<td><br>0.986</td>
|
913 |
</tr>
|
914 |
+
<tr>
|
915 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
|
916 |
+
<td><br>Precision</td>
|
917 |
+
<td><br>A</td>
|
918 |
+
<td><br>B</td>
|
919 |
+
<td><br>C</td>
|
920 |
+
<td><br>D</td>
|
921 |
+
<td><br>E</td>
|
922 |
+
<td><br>F</td>
|
923 |
+
</tr>
|
924 |
+
<tr>
|
925 |
+
<td><br>Recall</td>
|
926 |
+
<td><br>A</td>
|
927 |
+
<td><br>B</td>
|
928 |
+
<td><br>C</td>
|
929 |
+
<td><br>D</td>
|
930 |
+
<td><br>E</td>
|
931 |
+
<td><br>F</td>
|
932 |
+
</tr>
|
933 |
+
<tr>
|
934 |
+
<td>F1</td>
|
935 |
+
<td><br>A</td>
|
936 |
+
<td><br>B</td>
|
937 |
+
<td><br>C</td>
|
938 |
+
<td><br>D</td>
|
939 |
+
<td><br>E</td>
|
940 |
+
<td><br>F</td>
|
941 |
+
</tr>
|
942 |
</tbody>
|
943 |
</table>
|
944 |
+
</details>
|
945 |
|
946 |
## Usage
|
947 |
### Code
|
|
|
949 |
```python
|
950 |
from transformers import pipeline
|
951 |
|
952 |
+
ner = pipeline('question-answering', model='CATIE-AQ/NERmembert-base-4entities', tokenizer='CATIE-AQ/NERmembert-base-4entities', aggregation_strategy="simple")
|
953 |
|
954 |
results = ner(
|
955 |
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
|
|
1015 |
```
|
1016 |
|
1017 |
### Try it through Space
|
1018 |
+
A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/NERmembert).
|
1019 |
|
1020 |
|
1021 |
## Training procedure
|