bourdoiscatie commited on
Commit
05ead53
·
verified ·
1 Parent(s): ee9e350

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +452 -13
README.md CHANGED
@@ -7,7 +7,7 @@ metrics:
7
  - f1
8
  - accuracy
9
  model-index:
10
- - name: Camembert-base-frenchNER_4entities
11
  results: []
12
  datasets:
13
  - CATIE-AQ/frenchNER_4entities
@@ -21,11 +21,11 @@ co2_eq_emissions: 20
21
  ---
22
 
23
 
24
- # Camembert-base-frenchNER_4entities
25
 
26
  ## Model Description
27
 
28
- We present **Camembert-base-frenchNER_4entities**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
29
  All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
30
  There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
31
  Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
@@ -89,6 +89,60 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
89
 
90
  ### frenchNER_4entities
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  <table>
93
  <thead>
94
  <tr>
@@ -159,8 +213,36 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
159
  <td><br>0.989</td>
160
  <td><br>0.976</td>
161
  </tr>
162
- <tr>
163
- <td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  <td><br>Precision</td>
165
  <td><br>0.973</td>
166
  <td><br>0.951</td>
@@ -187,14 +269,95 @@ The evaluation was carried out using the [**evaluate**](https://pypi.org/project
187
  <td><br><b>0.993</b></td>
188
  <td><br><b>0.984</b></td>
189
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
  </tbody>
191
  </table>
192
-
193
 
194
  In detail:
195
 
196
  ### multiconer
197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  <table>
199
  <thead>
200
  <tr>
@@ -266,7 +429,35 @@ In detail:
266
  <td><br>0.881</td>
267
  </tr>
268
  <tr>
269
- <td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
  <td><br>Precision</td>
271
  <td><br>0.954</td>
272
  <td><br>0.893</td>
@@ -293,11 +484,94 @@ In detail:
293
  <td><br><b>0.977</b></td>
294
  <td><br><b>0.954</b></td>
295
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
  </tbody>
297
  </table>
 
 
298
 
299
  ### multinerd
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
  <table>
302
  <thead>
303
  <tr>
@@ -369,8 +643,36 @@ In detail:
369
  <td><br>0.967</td>
370
  </tr>
371
  <tr>
372
- <td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
373
  <td><br>Precision</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374
  <td><br>0.976</td>
375
  <td><br>0.961</td>
376
  <td><br>0.91</td>
@@ -396,12 +698,93 @@ In detail:
396
  <td><br><b>0.992</b></td>
397
  <td><br><b>0.983</b></td>
398
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399
  </tbody>
400
  </table>
401
-
402
 
403
  ### wikiner
404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405
  <table>
406
  <thead>
407
  <tr>
@@ -473,7 +856,35 @@ In detail:
473
  <td><br>0.991</td>
474
  </tr>
475
  <tr>
476
- <td rowspan="3"><br>Camembert-base-frenchNER_4entities</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  <td><br>Precision</td>
478
  <td><br>0.970</td>
479
  <td><br>0.944</td>
@@ -500,9 +911,37 @@ In detail:
500
  <td><br>0.996</td>
501
  <td><br>0.986</td>
502
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503
  </tbody>
504
  </table>
505
-
506
 
507
  ## Usage
508
  ### Code
@@ -510,7 +949,7 @@ In detail:
510
  ```python
511
  from transformers import pipeline
512
 
513
- ner = pipeline('question-answering', model='CATIE-AQ/Camembert-base-frenchNER_4entities', tokenizer='CATIE-AQ/Camembert-base-frenchNER_4entities', aggregation_strategy="simple")
514
 
515
  results = ner(
516
  "Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
@@ -576,7 +1015,7 @@ print(result)
576
  ```
577
 
578
  ### Try it through Space
579
- A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/Camembert-NER).
580
 
581
 
582
  ## Training procedure
 
7
  - f1
8
  - accuracy
9
  model-index:
10
+ - name: NERmembert-base-4entities
11
  results: []
12
  datasets:
13
  - CATIE-AQ/frenchNER_4entities
 
21
  ---
22
 
23
 
24
+ # NERmembert-base-4entities
25
 
26
  ## Model Description
27
 
28
+ We present **NERmembert-base-4entities**, which is a [CamemBERT base](https://huggingface.co/camembert-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
29
  All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
30
  There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
31
  Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
 
89
 
90
  ### frenchNER_4entities
91
 
92
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
93
+
94
+ <table>
95
+ <thead>
96
+ <tr>
97
+ <th><br>Model</th>
98
+ <th><br>PER</th>
99
+ <th><br>LOC</th>
100
+ <th><br>ORG</th>
101
+ <th><br>MISC</th>
102
+ </tr>
103
+ </thead>
104
+ <tbody>
105
+ <tr>
106
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
107
+ <td><br>0.971</td>
108
+ <td><br>0.947</td>
109
+ <td><br>0.902</td>
110
+ <td><br>0.663</td>
111
+ </tr>
112
+ <tr>
113
+ <td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
114
+ <td><br>0.974</td>
115
+ <td><br>0.948</td>
116
+ <td><br>0.892</td>
117
+ <td><br>0.658</td>
118
+ </tr>
119
+ <tr>
120
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
121
+ <td><br>A</td>
122
+ <td><br>B</td>
123
+ <td><br>C</td>
124
+ <td><br>0</td>
125
+ </tr>
126
+ <tr>
127
+ <td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
128
+ <td><br><b>0.978</b></td>
129
+ <td><br><b>0.958</b></td>
130
+ <td><br><b>0.903</b></td>
131
+ <td><br><b>0.814</b></td>
132
+ </tr>
133
+ <tr>
134
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
135
+ <td><br>A</td>
136
+ <td><br>B</td>
137
+ <td><br>C</td>
138
+ <td><br>D</td>
139
+ </tr>
140
+ </tbody>
141
+ </table>
142
+
143
+
144
+ <details>
145
+ <summary>Full results</summary>
146
  <table>
147
  <thead>
148
  <tr>
 
213
  <td><br>0.989</td>
214
  <td><br>0.976</td>
215
  </tr>
216
+ <tr>
217
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
218
+ <td><br>Precision</td>
219
+ <td><br>A</td>
220
+ <td><br>B</td>
221
+ <td><br>C</td>
222
+ <td><br>0</td>
223
+ <td><br>X</td>
224
+ <td><br>X</td>
225
+ </tr>
226
+ <tr>
227
+ <td><br>Recall</td>
228
+ <td><br>A</td>
229
+ <td><br>B</td>
230
+ <td><br>C</td>
231
+ <td><br>0</td>
232
+ <td><br>X</td>
233
+ <td><br>X</td>
234
+ </tr>
235
+ <tr>
236
+ <td>F1</td>
237
+ <td><br>A</td>
238
+ <td><br>B</td>
239
+ <td><br>C</td>
240
+ <td><br>0</td>
241
+ <td><br>X</td>
242
+ <td><br>X</td>
243
+ </tr>
244
+ <tr>
245
+ <td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
246
  <td><br>Precision</td>
247
  <td><br>0.973</td>
248
  <td><br>0.951</td>
 
269
  <td><br><b>0.993</b></td>
270
  <td><br><b>0.984</b></td>
271
  </tr>
272
+ <tr>
273
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
274
+ <td><br>Precision</td>
275
+ <td><br>A</td>
276
+ <td><br>B</td>
277
+ <td><br>C</td>
278
+ <td><br>D</td>
279
+ <td><br>E</td>
280
+ <td><br>F</td>
281
+ </tr>
282
+ <tr>
283
+ <td><br>Recall</td>
284
+ <td><br>A</td>
285
+ <td><br>B</td>
286
+ <td><br>C</td>
287
+ <td><br>D</td>
288
+ <td><br>E</td>
289
+ <td><br>F</td>
290
+ </tr>
291
+ <tr>
292
+ <td>F1</td>
293
+ <td><br>A</td>
294
+ <td><br>B</td>
295
+ <td><br>C</td>
296
+ <td><br>D</td>
297
+ <td><br>E</td>
298
+ <td><br>F</td>
299
+ </tr>
300
  </tbody>
301
  </table>
302
+ </details>
303
 
304
  In detail:
305
 
306
  ### multiconer
307
 
308
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
309
+
310
+ <table>
311
+ <thead>
312
+ <tr>
313
+ <th><br>Model</th>
314
+ <th><br>PER</th>
315
+ <th><br>LOC</th>
316
+ <th><br>ORG</th>
317
+ <th><br>MISC</th>
318
+ </tr>
319
+ </thead>
320
+ <tbody>
321
+ <tr>
322
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
323
+ <td><br>0.940</td>
324
+ <td><br>0.761</td>
325
+ <td><br>0.723</td>
326
+ <td><br>0.560</td>
327
+ </tr>
328
+ <tr>
329
+ <td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
330
+ <td><br>0.921</td>
331
+ <td><br>0.748</td>
332
+ <td><br>0.694</td>
333
+ <td><br>0.530</td>
334
+ </tr>
335
+ <tr>
336
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
337
+ <td><br>A</td>
338
+ <td><br>B</td>
339
+ <td><br>C</td>
340
+ <td><br>0</td>
341
+ </tr>
342
+ <tr>
343
+ <td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
344
+ <td><br><b>0.960</b></td>
345
+ <td><br><b>0.890</b></td>
346
+ <td><br><b>0.867</b></td>
347
+ <td><br><b>0.852</b></td>
348
+ </tr>
349
+ <tr>
350
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
351
+ <td><br>A</td>
352
+ <td><br>B</td>
353
+ <td><br>C</td>
354
+ <td><br>D</td>
355
+ </tr>
356
+ </tbody>
357
+ </table>
358
+
359
+ <details>
360
+ <summary>Full results</summary>
361
  <table>
362
  <thead>
363
  <tr>
 
429
  <td><br>0.881</td>
430
  </tr>
431
  <tr>
432
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
433
+ <td><br>Precision</td>
434
+ <td><br>A</td>
435
+ <td><br>B</td>
436
+ <td><br>C</td>
437
+ <td><br>0</td>
438
+ <td><br>X</td>
439
+ <td><br>X</td>
440
+ </tr>
441
+ <tr>
442
+ <td><br>Recall</td>
443
+ <td><br>A</td>
444
+ <td><br>B</td>
445
+ <td><br>C</td>
446
+ <td><br>0</td>
447
+ <td><br>X</td>
448
+ <td><br>X</td>
449
+ </tr>
450
+ <tr>
451
+ <td>F1</td>
452
+ <td><br>A</td>
453
+ <td><br>B</td>
454
+ <td><br>C</td>
455
+ <td><br>0</td>
456
+ <td><br>X</td>
457
+ <td><br>X</td>
458
+ </tr>
459
+ <tr>
460
+ <td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
461
  <td><br>Precision</td>
462
  <td><br>0.954</td>
463
  <td><br>0.893</td>
 
484
  <td><br><b>0.977</b></td>
485
  <td><br><b>0.954</b></td>
486
  </tr>
487
+ <tr>
488
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
489
+ <td><br>Precision</td>
490
+ <td><br>A</td>
491
+ <td><br>B</td>
492
+ <td><br>C</td>
493
+ <td><br>D</td>
494
+ <td><br>E</td>
495
+ <td><br>F</td>
496
+ </tr>
497
+ <tr>
498
+ <td><br>Recall</td>
499
+ <td><br>A</td>
500
+ <td><br>B</td>
501
+ <td><br>C</td>
502
+ <td><br>D</td>
503
+ <td><br>E</td>
504
+ <td><br>F</td>
505
+ </tr>
506
+ <tr>
507
+ <td>F1</td>
508
+ <td><br>A</td>
509
+ <td><br>B</td>
510
+ <td><br>C</td>
511
+ <td><br>D</td>
512
+ <td><br>E</td>
513
+ <td><br>F</td>
514
+ </tr>
515
  </tbody>
516
  </table>
517
+ </details>
518
+
519
 
520
  ### multinerd
521
 
522
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
523
+
524
+ <table>
525
+ <thead>
526
+ <tr>
527
+ <th><br>Model</th>
528
+ <th><br>PER</th>
529
+ <th><br>LOC</th>
530
+ <th><br>ORG</th>
531
+ <th><br>MISC</th>
532
+ </tr>
533
+ </thead>
534
+ <tbody>
535
+ <tr>
536
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
537
+ <td><br>0.962</td>
538
+ <td><br>0.934</td>
539
+ <td><br>0.888</td>
540
+ <td><br>0.419</td>
541
+ </tr>
542
+ <tr>
543
+ <td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
544
+ <td><br>0.972</td>
545
+ <td><br>0.938</td>
546
+ <td><br>0.884</td>
547
+ <td><br>0.430</td>
548
+ </tr>
549
+ <tr>
550
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
551
+ <td><br>A</td>
552
+ <td><br>B</td>
553
+ <td><br>C</td>
554
+ <td><br>0</td>
555
+ </tr>
556
+ <tr>
557
+ <td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
558
+ <td><br><b>0.985</b></td>
559
+ <td><br><b>0.973</b></td>
560
+ <td><br><b>0.938</b></td>
561
+ <td><br><b>0.770</b></td>
562
+ </tr>
563
+ <tr>
564
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
565
+ <td><br>A</td>
566
+ <td><br>B</td>
567
+ <td><br>C</td>
568
+ <td><br>D</td>
569
+ </tr>
570
+ </tbody>
571
+ </table>
572
+
573
+ <details>
574
+ <summary>Full results</summary>
575
  <table>
576
  <thead>
577
  <tr>
 
643
  <td><br>0.967</td>
644
  </tr>
645
  <tr>
646
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
647
  <td><br>Precision</td>
648
+ <td><br>A</td>
649
+ <td><br>B</td>
650
+ <td><br>C</td>
651
+ <td><br>0</td>
652
+ <td><br>X</td>
653
+ <td><br>X</td>
654
+ </tr>
655
+ <tr>
656
+ <td><br>Recall</td>
657
+ <td><br>A</td>
658
+ <td><br>B</td>
659
+ <td><br>C</td>
660
+ <td><br>0</td>
661
+ <td><br>X</td>
662
+ <td><br>X</td>
663
+ </tr>
664
+ <tr>
665
+ <td>F1</td>
666
+ <td><br>A</td>
667
+ <td><br>B</td>
668
+ <td><br>C</td>
669
+ <td><br>0</td>
670
+ <td><br>X</td>
671
+ <td><br>X</td>
672
+ </tr>
673
+ <tr>
674
+ <td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
675
+ <td><br>Precision</td>
676
  <td><br>0.976</td>
677
  <td><br>0.961</td>
678
  <td><br>0.91</td>
 
698
  <td><br><b>0.992</b></td>
699
  <td><br><b>0.983</b></td>
700
  </tr>
701
+ <tr>
702
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
703
+ <td><br>Precision</td>
704
+ <td><br>A</td>
705
+ <td><br>B</td>
706
+ <td><br>C</td>
707
+ <td><br>D</td>
708
+ <td><br>E</td>
709
+ <td><br>F</td>
710
+ </tr>
711
+ <tr>
712
+ <td><br>Recall</td>
713
+ <td><br>A</td>
714
+ <td><br>B</td>
715
+ <td><br>C</td>
716
+ <td><br>D</td>
717
+ <td><br>E</td>
718
+ <td><br>F</td>
719
+ </tr>
720
+ <tr>
721
+ <td>F1</td>
722
+ <td><br>A</td>
723
+ <td><br>B</td>
724
+ <td><br>C</td>
725
+ <td><br>D</td>
726
+ <td><br>E</td>
727
+ <td><br>F</td>
728
+ </tr>
729
  </tbody>
730
  </table>
731
+ </details>
732
 
733
  ### wikiner
734
 
735
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
736
+
737
+ <table>
738
+ <thead>
739
+ <tr>
740
+ <th><br>Model</th>
741
+ <th><br>PER</th>
742
+ <th><br>LOC</th>
743
+ <th><br>ORG</th>
744
+ <th><br>MISC</th>
745
+ </tr>
746
+ </thead>
747
+ <tbody>
748
+ <tr>
749
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
750
+ <td><br><b>0.986</b></td>
751
+ <td><br><b>0.966</b></td>
752
+ <td><br><b>0.938</b></td>
753
+ <td><br><b>0.938</b></td>
754
+ </tr>
755
+ <tr>
756
+ <td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
757
+ <td><br>0.983</td>
758
+ <td><br>0.964</td>
759
+ <td><br>0.925</td>
760
+ <td><br>0.926</td>
761
+ </tr>
762
+ <tr>
763
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
764
+ <td><br>A</td>
765
+ <td><br>B</td>
766
+ <td><br>C</td>
767
+ <td><br>0</td>
768
+ </tr>
769
+ <tr>
770
+ <td rowspan="1"><br>NERmembert-base-4entities (this model)</td>
771
+ <td><br>0.970</td>
772
+ <td><br>0.945</td>
773
+ <td><br>0.876</td>
774
+ <td><br>0.872</td>
775
+ </tr>
776
+ <tr>
777
+ <td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
778
+ <td><br>A</td>
779
+ <td><br>B</td>
780
+ <td><br>C</td>
781
+ <td><br>D</td>
782
+ </tr>
783
+ </tbody>
784
+ </table>
785
+
786
+ <details>
787
+ <summary>Full results</summary>
788
  <table>
789
  <thead>
790
  <tr>
 
856
  <td><br>0.991</td>
857
  </tr>
858
  <tr>
859
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
860
+ <td><br>Precision</td>
861
+ <td><br>A</td>
862
+ <td><br>B</td>
863
+ <td><br>C</td>
864
+ <td><br>0</td>
865
+ <td><br>X</td>
866
+ <td><br>X</td>
867
+ </tr>
868
+ <tr>
869
+ <td><br>Recall</td>
870
+ <td><br>A</td>
871
+ <td><br>B</td>
872
+ <td><br>C</td>
873
+ <td><br>0</td>
874
+ <td><br>X</td>
875
+ <td><br>X</td>
876
+ </tr>
877
+ <tr>
878
+ <td>F1</td>
879
+ <td><br>A</td>
880
+ <td><br>B</td>
881
+ <td><br>C</td>
882
+ <td><br>0</td>
883
+ <td><br>X</td>
884
+ <td><br>X</td>
885
+ </tr>
886
+ <tr>
887
+ <td rowspan="3"><br>NERmembert-base-4entities (this model)</td>
888
  <td><br>Precision</td>
889
  <td><br>0.970</td>
890
  <td><br>0.944</td>
 
911
  <td><br>0.996</td>
912
  <td><br>0.986</td>
913
  </tr>
914
+ <tr>
915
+ <td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities</a></td>
916
+ <td><br>Precision</td>
917
+ <td><br>A</td>
918
+ <td><br>B</td>
919
+ <td><br>C</td>
920
+ <td><br>D</td>
921
+ <td><br>E</td>
922
+ <td><br>F</td>
923
+ </tr>
924
+ <tr>
925
+ <td><br>Recall</td>
926
+ <td><br>A</td>
927
+ <td><br>B</td>
928
+ <td><br>C</td>
929
+ <td><br>D</td>
930
+ <td><br>E</td>
931
+ <td><br>F</td>
932
+ </tr>
933
+ <tr>
934
+ <td>F1</td>
935
+ <td><br>A</td>
936
+ <td><br>B</td>
937
+ <td><br>C</td>
938
+ <td><br>D</td>
939
+ <td><br>E</td>
940
+ <td><br>F</td>
941
+ </tr>
942
  </tbody>
943
  </table>
944
+ </details>
945
 
946
  ## Usage
947
  ### Code
 
949
  ```python
950
  from transformers import pipeline
951
 
952
+ ner = pipeline('question-answering', model='CATIE-AQ/NERmembert-base-4entities', tokenizer='CATIE-AQ/NERmembert-base-4entities', aggregation_strategy="simple")
953
 
954
  results = ner(
955
  "Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
 
1015
  ```
1016
 
1017
  ### Try it through Space
1018
+ A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/NERmembert).
1019
 
1020
 
1021
  ## Training procedure