BramVanroy commited on
Commit
5c62403
·
verified ·
1 Parent(s): e563b5a

Delete checkpoint-1166

Browse files
checkpoint-1166/added_tokens.json DELETED
@@ -1,42 +0,0 @@
1
- {
2
- "\t\t": 50294,
3
- "\t\t\t": 50293,
4
- "\t\t\t\t": 50292,
5
- "\t\t\t\t\t": 50291,
6
- "\t\t\t\t\t\t": 50290,
7
- "\t\t\t\t\t\t\t": 50289,
8
- "\t\t\t\t\t\t\t\t": 50288,
9
- "\t\t\t\t\t\t\t\t\t": 50287,
10
- " ": 50286,
11
- " ": 50285,
12
- " ": 50284,
13
- " ": 50283,
14
- " ": 50282,
15
- " ": 50281,
16
- " ": 50280,
17
- " ": 50279,
18
- " ": 50278,
19
- " ": 50277,
20
- " ": 50276,
21
- " ": 50275,
22
- " ": 50274,
23
- " ": 50273,
24
- " ": 50272,
25
- " ": 50271,
26
- " ": 50270,
27
- " ": 50269,
28
- " ": 50268,
29
- " ": 50267,
30
- " ": 50266,
31
- " ": 50265,
32
- " ": 50264,
33
- " ": 50263,
34
- " ": 50262,
35
- " ": 50261,
36
- " ": 50260,
37
- " ": 50259,
38
- " ": 50258,
39
- " ": 50257,
40
- "<|im_end|>": 50296,
41
- "<|im_start|>": 50295
42
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1166/config.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "_name_or_path": "BramVanroy/fietje-2b-sft",
3
- "architectures": [
4
- "PhiForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "auto_map": {
8
- "AutoConfig": "microsoft/phi-2--configuration_phi.PhiConfig",
9
- "AutoModelForCausalLM": "microsoft/phi-2--modeling_phi.PhiForCausalLM"
10
- },
11
- "bos_token_id": 50256,
12
- "embd_pdrop": 0.0,
13
- "eos_token_id": 50256,
14
- "hidden_act": "gelu_new",
15
- "hidden_size": 2560,
16
- "initializer_range": 0.02,
17
- "intermediate_size": 10240,
18
- "layer_norm_eps": 1e-05,
19
- "max_position_embeddings": 2048,
20
- "model_type": "phi",
21
- "num_attention_heads": 32,
22
- "num_hidden_layers": 32,
23
- "num_key_value_heads": 32,
24
- "partial_rotary_factor": 0.4,
25
- "qk_layernorm": false,
26
- "resid_pdrop": 0.1,
27
- "rope_scaling": null,
28
- "rope_theta": 10000.0,
29
- "tie_word_embeddings": false,
30
- "torch_dtype": "bfloat16",
31
- "transformers_version": "4.39.1",
32
- "use_cache": false,
33
- "vocab_size": 50297
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1166/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 50295,
4
- "eos_token_id": 50296,
5
- "pad_token_id": 50296,
6
- "transformers_version": "4.39.1"
7
- }
 
 
 
 
 
 
 
 
checkpoint-1166/global_step1166/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:838fea68213363dbc95550694f4e0c05fcbd41bdbd1488f007493e686d7beddd
3
- size 22200481624
 
 
 
 
checkpoint-1166/global_step1166/zero_pp_rank_0_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd41625af1bd0d32333bceec127177d84247f6179f856f8cdff9a3ba2d13e382
3
- size 214911
 
 
 
 
checkpoint-1166/latest DELETED
@@ -1 +0,0 @@
1
- global_step1166
 
 
checkpoint-1166/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-1166/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7e738b079913369d46164d298ea2383ae644e637d2874c03ab2e5712c151010
3
- size 4990961488
 
 
 
 
checkpoint-1166/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbbe7ec19b53a1fa62bc73fc61c14dd39fd30b1ee3c15d07aa9b47fdd8085443
3
- size 559207842
 
 
 
 
checkpoint-1166/model.safetensors.index.json DELETED
@@ -1,460 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 5550119154
4
- },
5
- "weight_map": {
6
- "lm_head.bias": "model-00002-of-00002.safetensors",
7
- "lm_head.weight": "model-00002-of-00002.safetensors",
8
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
9
- "model.final_layernorm.bias": "model-00002-of-00002.safetensors",
10
- "model.final_layernorm.weight": "model-00002-of-00002.safetensors",
11
- "model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
12
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
14
- "model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
16
- "model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
17
- "model.layers.0.self_attn.dense.bias": "model-00001-of-00002.safetensors",
18
- "model.layers.0.self_attn.dense.weight": "model-00001-of-00002.safetensors",
19
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
20
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
22
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
24
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
26
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
28
- "model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
29
- "model.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
30
- "model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
31
- "model.layers.1.self_attn.dense.bias": "model-00001-of-00002.safetensors",
32
- "model.layers.1.self_attn.dense.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
34
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
36
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
38
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
40
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
- "model.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
42
- "model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
43
- "model.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
44
- "model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.10.self_attn.dense.bias": "model-00001-of-00002.safetensors",
46
- "model.layers.10.self_attn.dense.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
48
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
50
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
52
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
- "model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
54
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
55
- "model.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
56
- "model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
58
- "model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.11.self_attn.dense.bias": "model-00001-of-00002.safetensors",
60
- "model.layers.11.self_attn.dense.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
- "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
- "model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
68
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
70
- "model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
72
- "model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.12.self_attn.dense.bias": "model-00001-of-00002.safetensors",
74
- "model.layers.12.self_attn.dense.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
76
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
- "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
78
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
- "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
80
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
82
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
84
- "model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
86
- "model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.13.self_attn.dense.bias": "model-00001-of-00002.safetensors",
88
- "model.layers.13.self_attn.dense.weight": "model-00001-of-00002.safetensors",
89
- "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
90
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
91
- "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
92
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
94
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
96
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
98
- "model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
100
- "model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
101
- "model.layers.14.self_attn.dense.bias": "model-00001-of-00002.safetensors",
102
- "model.layers.14.self_attn.dense.weight": "model-00001-of-00002.safetensors",
103
- "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
104
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
106
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
108
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
110
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
112
- "model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
113
- "model.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
114
- "model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
115
- "model.layers.15.self_attn.dense.bias": "model-00001-of-00002.safetensors",
116
- "model.layers.15.self_attn.dense.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
118
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
120
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
122
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
124
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
- "model.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
126
- "model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
127
- "model.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
128
- "model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.16.self_attn.dense.bias": "model-00001-of-00002.safetensors",
130
- "model.layers.16.self_attn.dense.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
132
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
134
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
136
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
137
- "model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
138
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
139
- "model.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
140
- "model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
142
- "model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.17.self_attn.dense.bias": "model-00001-of-00002.safetensors",
144
- "model.layers.17.self_attn.dense.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
- "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
- "model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
152
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
154
- "model.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
156
- "model.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.18.self_attn.dense.bias": "model-00001-of-00002.safetensors",
158
- "model.layers.18.self_attn.dense.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
160
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
161
- "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
162
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
163
- "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
164
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
166
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
168
- "model.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
170
- "model.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.19.self_attn.dense.bias": "model-00001-of-00002.safetensors",
172
- "model.layers.19.self_attn.dense.weight": "model-00001-of-00002.safetensors",
173
- "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
174
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
175
- "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
176
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
178
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
180
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
182
- "model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
184
- "model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
185
- "model.layers.2.self_attn.dense.bias": "model-00001-of-00002.safetensors",
186
- "model.layers.2.self_attn.dense.weight": "model-00001-of-00002.safetensors",
187
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
188
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
189
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
190
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
192
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
193
- "model.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
194
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
196
- "model.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
197
- "model.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
198
- "model.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
199
- "model.layers.20.self_attn.dense.bias": "model-00001-of-00002.safetensors",
200
- "model.layers.20.self_attn.dense.weight": "model-00001-of-00002.safetensors",
201
- "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
202
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
- "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
204
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
- "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
206
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
207
- "model.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
208
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
209
- "model.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
210
- "model.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
211
- "model.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
212
- "model.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
213
- "model.layers.21.self_attn.dense.bias": "model-00001-of-00002.safetensors",
214
- "model.layers.21.self_attn.dense.weight": "model-00001-of-00002.safetensors",
215
- "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
216
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
218
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
220
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
221
- "model.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
222
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
223
- "model.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
224
- "model.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
225
- "model.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
226
- "model.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
227
- "model.layers.22.self_attn.dense.bias": "model-00001-of-00002.safetensors",
228
- "model.layers.22.self_attn.dense.weight": "model-00001-of-00002.safetensors",
229
- "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
- "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
- "model.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
236
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
- "model.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
238
- "model.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
239
- "model.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
240
- "model.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
241
- "model.layers.23.self_attn.dense.bias": "model-00001-of-00002.safetensors",
242
- "model.layers.23.self_attn.dense.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
244
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
245
- "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
246
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
247
- "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
248
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
250
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
252
- "model.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
254
- "model.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.24.self_attn.dense.bias": "model-00001-of-00002.safetensors",
256
- "model.layers.24.self_attn.dense.weight": "model-00001-of-00002.safetensors",
257
- "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
258
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
259
- "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
260
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
261
- "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
262
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
263
- "model.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
264
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
265
- "model.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
266
- "model.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
268
- "model.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
269
- "model.layers.25.self_attn.dense.bias": "model-00001-of-00002.safetensors",
270
- "model.layers.25.self_attn.dense.weight": "model-00001-of-00002.safetensors",
271
- "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
272
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
273
- "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
274
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
275
- "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
276
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
277
- "model.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
278
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
- "model.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
280
- "model.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
281
- "model.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
282
- "model.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
283
- "model.layers.26.self_attn.dense.bias": "model-00001-of-00002.safetensors",
284
- "model.layers.26.self_attn.dense.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
286
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
288
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
290
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
292
- "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
293
- "model.layers.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
294
- "model.layers.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
295
- "model.layers.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
296
- "model.layers.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
297
- "model.layers.27.self_attn.dense.bias": "model-00001-of-00002.safetensors",
298
- "model.layers.27.self_attn.dense.weight": "model-00001-of-00002.safetensors",
299
- "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
300
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
301
- "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
302
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
303
- "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
304
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
305
- "model.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
306
- "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
307
- "model.layers.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
308
- "model.layers.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
309
- "model.layers.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
310
- "model.layers.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
311
- "model.layers.28.self_attn.dense.bias": "model-00001-of-00002.safetensors",
312
- "model.layers.28.self_attn.dense.weight": "model-00001-of-00002.safetensors",
313
- "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
314
- "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
315
- "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
- "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
- "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
- "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
- "model.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
320
- "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
321
- "model.layers.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
322
- "model.layers.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
323
- "model.layers.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
324
- "model.layers.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
325
- "model.layers.29.self_attn.dense.bias": "model-00001-of-00002.safetensors",
326
- "model.layers.29.self_attn.dense.weight": "model-00001-of-00002.safetensors",
327
- "model.layers.29.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
328
- "model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
329
- "model.layers.29.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
330
- "model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
331
- "model.layers.29.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
332
- "model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
333
- "model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
334
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
335
- "model.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
336
- "model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
337
- "model.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
338
- "model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
339
- "model.layers.3.self_attn.dense.bias": "model-00001-of-00002.safetensors",
340
- "model.layers.3.self_attn.dense.weight": "model-00001-of-00002.safetensors",
341
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
342
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
343
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
344
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
345
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
346
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
347
- "model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
348
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
350
- "model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
352
- "model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
353
- "model.layers.30.self_attn.dense.bias": "model-00002-of-00002.safetensors",
354
- "model.layers.30.self_attn.dense.weight": "model-00002-of-00002.safetensors",
355
- "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
356
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.30.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
358
- "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
359
- "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
360
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
362
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
364
- "model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
365
- "model.layers.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
366
- "model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
367
- "model.layers.31.self_attn.dense.bias": "model-00002-of-00002.safetensors",
368
- "model.layers.31.self_attn.dense.weight": "model-00002-of-00002.safetensors",
369
- "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
370
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
371
- "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
372
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
373
- "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
374
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
375
- "model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
376
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
377
- "model.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
378
- "model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
379
- "model.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
380
- "model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
381
- "model.layers.4.self_attn.dense.bias": "model-00001-of-00002.safetensors",
382
- "model.layers.4.self_attn.dense.weight": "model-00001-of-00002.safetensors",
383
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
384
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
385
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
386
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
387
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
388
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
389
- "model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
390
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
391
- "model.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
392
- "model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
393
- "model.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
394
- "model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
395
- "model.layers.5.self_attn.dense.bias": "model-00001-of-00002.safetensors",
396
- "model.layers.5.self_attn.dense.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
- "model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
404
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
406
- "model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
408
- "model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.6.self_attn.dense.bias": "model-00001-of-00002.safetensors",
410
- "model.layers.6.self_attn.dense.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
412
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
413
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
414
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
415
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
416
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
418
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
420
- "model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
422
- "model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.7.self_attn.dense.bias": "model-00001-of-00002.safetensors",
424
- "model.layers.7.self_attn.dense.weight": "model-00001-of-00002.safetensors",
425
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
426
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
427
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
428
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
430
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
432
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
434
- "model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
436
- "model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
437
- "model.layers.8.self_attn.dense.bias": "model-00001-of-00002.safetensors",
438
- "model.layers.8.self_attn.dense.weight": "model-00001-of-00002.safetensors",
439
- "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
440
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
441
- "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
442
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
443
- "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
444
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
445
- "model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
446
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
447
- "model.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
448
- "model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
449
- "model.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
450
- "model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
451
- "model.layers.9.self_attn.dense.bias": "model-00001-of-00002.safetensors",
452
- "model.layers.9.self_attn.dense.weight": "model-00001-of-00002.safetensors",
453
- "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
454
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
455
- "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
456
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
457
- "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
458
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors"
459
- }
460
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1166/rng_state.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c733f603eddfbf8aea2db46dfb96d2d44052ea3c8d772ba82a9011002700581
3
- size 14244
 
 
 
 
checkpoint-1166/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f9265eb5f0305f42b366f1f01d33d5d0c69b9271a58777097c906d787d6129cb
3
- size 1064
 
 
 
 
checkpoint-1166/special_tokens_map.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>"
5
- ],
6
- "bos_token": {
7
- "content": "<|im_start|>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false
12
- },
13
- "eos_token": {
14
- "content": "<|im_end|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
- "pad_token": {
21
- "content": "<|im_end|>",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false
26
- },
27
- "unk_token": {
28
- "content": "<|endoftext|>",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false
33
- }
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1166/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-1166/tokenizer_config.json DELETED
@@ -1,345 +0,0 @@
1
- {
2
- "add_prefix_space": false,
3
- "added_tokens_decoder": {
4
- "50256": {
5
- "content": "<|endoftext|>",
6
- "lstrip": false,
7
- "normalized": false,
8
- "rstrip": false,
9
- "single_word": false,
10
- "special": true
11
- },
12
- "50257": {
13
- "content": " ",
14
- "lstrip": false,
15
- "normalized": true,
16
- "rstrip": false,
17
- "single_word": false,
18
- "special": false
19
- },
20
- "50258": {
21
- "content": " ",
22
- "lstrip": false,
23
- "normalized": true,
24
- "rstrip": false,
25
- "single_word": false,
26
- "special": false
27
- },
28
- "50259": {
29
- "content": " ",
30
- "lstrip": false,
31
- "normalized": true,
32
- "rstrip": false,
33
- "single_word": false,
34
- "special": false
35
- },
36
- "50260": {
37
- "content": " ",
38
- "lstrip": false,
39
- "normalized": true,
40
- "rstrip": false,
41
- "single_word": false,
42
- "special": false
43
- },
44
- "50261": {
45
- "content": " ",
46
- "lstrip": false,
47
- "normalized": true,
48
- "rstrip": false,
49
- "single_word": false,
50
- "special": false
51
- },
52
- "50262": {
53
- "content": " ",
54
- "lstrip": false,
55
- "normalized": true,
56
- "rstrip": false,
57
- "single_word": false,
58
- "special": false
59
- },
60
- "50263": {
61
- "content": " ",
62
- "lstrip": false,
63
- "normalized": true,
64
- "rstrip": false,
65
- "single_word": false,
66
- "special": false
67
- },
68
- "50264": {
69
- "content": " ",
70
- "lstrip": false,
71
- "normalized": true,
72
- "rstrip": false,
73
- "single_word": false,
74
- "special": false
75
- },
76
- "50265": {
77
- "content": " ",
78
- "lstrip": false,
79
- "normalized": true,
80
- "rstrip": false,
81
- "single_word": false,
82
- "special": false
83
- },
84
- "50266": {
85
- "content": " ",
86
- "lstrip": false,
87
- "normalized": true,
88
- "rstrip": false,
89
- "single_word": false,
90
- "special": false
91
- },
92
- "50267": {
93
- "content": " ",
94
- "lstrip": false,
95
- "normalized": true,
96
- "rstrip": false,
97
- "single_word": false,
98
- "special": false
99
- },
100
- "50268": {
101
- "content": " ",
102
- "lstrip": false,
103
- "normalized": true,
104
- "rstrip": false,
105
- "single_word": false,
106
- "special": false
107
- },
108
- "50269": {
109
- "content": " ",
110
- "lstrip": false,
111
- "normalized": true,
112
- "rstrip": false,
113
- "single_word": false,
114
- "special": false
115
- },
116
- "50270": {
117
- "content": " ",
118
- "lstrip": false,
119
- "normalized": true,
120
- "rstrip": false,
121
- "single_word": false,
122
- "special": false
123
- },
124
- "50271": {
125
- "content": " ",
126
- "lstrip": false,
127
- "normalized": true,
128
- "rstrip": false,
129
- "single_word": false,
130
- "special": false
131
- },
132
- "50272": {
133
- "content": " ",
134
- "lstrip": false,
135
- "normalized": true,
136
- "rstrip": false,
137
- "single_word": false,
138
- "special": false
139
- },
140
- "50273": {
141
- "content": " ",
142
- "lstrip": false,
143
- "normalized": true,
144
- "rstrip": false,
145
- "single_word": false,
146
- "special": false
147
- },
148
- "50274": {
149
- "content": " ",
150
- "lstrip": false,
151
- "normalized": true,
152
- "rstrip": false,
153
- "single_word": false,
154
- "special": false
155
- },
156
- "50275": {
157
- "content": " ",
158
- "lstrip": false,
159
- "normalized": true,
160
- "rstrip": false,
161
- "single_word": false,
162
- "special": false
163
- },
164
- "50276": {
165
- "content": " ",
166
- "lstrip": false,
167
- "normalized": true,
168
- "rstrip": false,
169
- "single_word": false,
170
- "special": false
171
- },
172
- "50277": {
173
- "content": " ",
174
- "lstrip": false,
175
- "normalized": true,
176
- "rstrip": false,
177
- "single_word": false,
178
- "special": false
179
- },
180
- "50278": {
181
- "content": " ",
182
- "lstrip": false,
183
- "normalized": true,
184
- "rstrip": false,
185
- "single_word": false,
186
- "special": false
187
- },
188
- "50279": {
189
- "content": " ",
190
- "lstrip": false,
191
- "normalized": true,
192
- "rstrip": false,
193
- "single_word": false,
194
- "special": false
195
- },
196
- "50280": {
197
- "content": " ",
198
- "lstrip": false,
199
- "normalized": true,
200
- "rstrip": false,
201
- "single_word": false,
202
- "special": false
203
- },
204
- "50281": {
205
- "content": " ",
206
- "lstrip": false,
207
- "normalized": true,
208
- "rstrip": false,
209
- "single_word": false,
210
- "special": false
211
- },
212
- "50282": {
213
- "content": " ",
214
- "lstrip": false,
215
- "normalized": true,
216
- "rstrip": false,
217
- "single_word": false,
218
- "special": false
219
- },
220
- "50283": {
221
- "content": " ",
222
- "lstrip": false,
223
- "normalized": true,
224
- "rstrip": false,
225
- "single_word": false,
226
- "special": false
227
- },
228
- "50284": {
229
- "content": " ",
230
- "lstrip": false,
231
- "normalized": true,
232
- "rstrip": false,
233
- "single_word": false,
234
- "special": false
235
- },
236
- "50285": {
237
- "content": " ",
238
- "lstrip": false,
239
- "normalized": true,
240
- "rstrip": false,
241
- "single_word": false,
242
- "special": false
243
- },
244
- "50286": {
245
- "content": " ",
246
- "lstrip": false,
247
- "normalized": true,
248
- "rstrip": false,
249
- "single_word": false,
250
- "special": false
251
- },
252
- "50287": {
253
- "content": "\t\t\t\t\t\t\t\t\t",
254
- "lstrip": false,
255
- "normalized": true,
256
- "rstrip": false,
257
- "single_word": false,
258
- "special": false
259
- },
260
- "50288": {
261
- "content": "\t\t\t\t\t\t\t\t",
262
- "lstrip": false,
263
- "normalized": true,
264
- "rstrip": false,
265
- "single_word": false,
266
- "special": false
267
- },
268
- "50289": {
269
- "content": "\t\t\t\t\t\t\t",
270
- "lstrip": false,
271
- "normalized": true,
272
- "rstrip": false,
273
- "single_word": false,
274
- "special": false
275
- },
276
- "50290": {
277
- "content": "\t\t\t\t\t\t",
278
- "lstrip": false,
279
- "normalized": true,
280
- "rstrip": false,
281
- "single_word": false,
282
- "special": false
283
- },
284
- "50291": {
285
- "content": "\t\t\t\t\t",
286
- "lstrip": false,
287
- "normalized": true,
288
- "rstrip": false,
289
- "single_word": false,
290
- "special": false
291
- },
292
- "50292": {
293
- "content": "\t\t\t\t",
294
- "lstrip": false,
295
- "normalized": true,
296
- "rstrip": false,
297
- "single_word": false,
298
- "special": false
299
- },
300
- "50293": {
301
- "content": "\t\t\t",
302
- "lstrip": false,
303
- "normalized": true,
304
- "rstrip": false,
305
- "single_word": false,
306
- "special": false
307
- },
308
- "50294": {
309
- "content": "\t\t",
310
- "lstrip": false,
311
- "normalized": true,
312
- "rstrip": false,
313
- "single_word": false,
314
- "special": false
315
- },
316
- "50295": {
317
- "content": "<|im_start|>",
318
- "lstrip": false,
319
- "normalized": false,
320
- "rstrip": false,
321
- "single_word": false,
322
- "special": true
323
- },
324
- "50296": {
325
- "content": "<|im_end|>",
326
- "lstrip": false,
327
- "normalized": false,
328
- "rstrip": false,
329
- "single_word": false,
330
- "special": true
331
- }
332
- },
333
- "additional_special_tokens": [
334
- "<|im_start|>",
335
- "<|im_end|>"
336
- ],
337
- "bos_token": "<|im_start|>",
338
- "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
339
- "clean_up_tokenization_spaces": true,
340
- "eos_token": "<|im_end|>",
341
- "model_max_length": 2048,
342
- "pad_token": "<|im_end|>",
343
- "tokenizer_class": "CodeGenTokenizer",
344
- "unk_token": "<|endoftext|>"
345
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-1166/trainer_state.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-1166/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:16846856f3be552e96317acc5f6c7f4807f2267811c8b8fcdd0537d2e451ee0d
3
- size 6392
 
 
 
 
checkpoint-1166/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-1166/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)