File size: 2,677 Bytes
280f9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny
tags:
- generated_from_trainer
datasets:
- BramVanroy/dutch_chat_datasets
model-index:
- name: 2e-4lr+64tbs+32a+4r
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 2e-4lr+64tbs+32a+4r

This model is a fine-tuned version of [BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny](https://huggingface.co./BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny) on the BramVanroy/dutch_chat_datasets dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0193        | 0.09  | 20   | 1.1583          |
| 0.9743        | 0.17  | 40   | 1.1339          |
| 0.9159        | 0.26  | 60   | 1.1218          |
| 0.9131        | 0.35  | 80   | 1.1153          |
| 0.8816        | 0.44  | 100  | 1.1130          |
| 0.8977        | 0.52  | 120  | 1.1069          |
| 0.9061        | 0.61  | 140  | 1.1025          |
| 0.8672        | 0.7   | 160  | 1.1024          |
| 0.8956        | 0.79  | 180  | 1.0971          |
| 0.8514        | 0.87  | 200  | 1.0995          |
| 0.8357        | 0.96  | 220  | 1.0952          |
| 0.8294        | 1.05  | 240  | 1.0964          |
| 0.8531        | 1.13  | 260  | 1.0947          |
| 0.8321        | 1.22  | 280  | 1.0951          |
| 0.8365        | 1.31  | 300  | 1.0910          |
| 0.8616        | 1.4   | 320  | 1.0894          |
| 0.8397        | 1.48  | 340  | 1.0904          |
| 0.861         | 1.57  | 360  | 1.0880          |
| 0.8116        | 1.66  | 380  | 1.0871          |
| 0.8285        | 1.74  | 400  | 1.0855          |
| 0.8603        | 1.83  | 420  | 1.0856          |
| 0.8126        | 1.92  | 440  | 1.0848          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3