BramVanroy
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -48,7 +48,7 @@ Here is a break down of the training set (some data pages might not be available
|
|
48 |
|
49 |
- [BramVanroy/ultrachat_200k_dutch](https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch) (gpt-4-turbo; multi-turn; generated): 85.42%
|
50 |
- [BramVanroy/no_robots_dutch](https://huggingface.co/datasets/BramVanroy/no_robots_dutch) (gpt-4-turbo; prompt translate, answer generated): 2.20%
|
51 |
-
- [BramVanroy/stackoverflow-chat-dutch](https://huggingface.co/datasets/BramVanroy/stackoverflow-chat-dutch) (gpt-3.5-turbo; multi-turn; code; translated): 8.38%
|
52 |
- [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) (gpt-3.5-turbo; translated): 2.62%
|
53 |
- [BramVanroy/dolly-15k-dutch](https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch) (gpt-3.5-turbo; translated): 1.39%
|
54 |
|
@@ -58,7 +58,63 @@ Here is a break down of the training set (some data pages might not be available
|
|
58 |
|
59 |
The great [alignment handbook](https://github.com/huggingface/alignment-handbook/) was used for training, with a custom slurm script for compatibility with our cluster. It was trained in full, without LoRA or other adapters.
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
The model was trained on two nodes of four A100 80GB each for around 2.5 hours. I thank the [Flemish Super Computer](https://www.vscentrum.be/compute) for their compute.
|
64 |
|
|
|
48 |
|
49 |
- [BramVanroy/ultrachat_200k_dutch](https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch) (gpt-4-turbo; multi-turn; generated): 85.42%
|
50 |
- [BramVanroy/no_robots_dutch](https://huggingface.co/datasets/BramVanroy/no_robots_dutch) (gpt-4-turbo; prompt translate, answer generated): 2.20%
|
51 |
+
- [BramVanroy/stackoverflow-chat-dutch](https://huggingface.co/datasets/BramVanroy/stackoverflow-chat-dutch) (gpt-3.5-turbo; multi-turn; code; translated; only 50% used): 8.38%
|
52 |
- [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) (gpt-3.5-turbo; translated): 2.62%
|
53 |
- [BramVanroy/dolly-15k-dutch](https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch) (gpt-3.5-turbo; translated): 1.39%
|
54 |
|
|
|
58 |
|
59 |
The great [alignment handbook](https://github.com/huggingface/alignment-handbook/) was used for training, with a custom slurm script for compatibility with our cluster. It was trained in full, without LoRA or other adapters.
|
60 |
|
61 |
+
The model was trained in bfloat16 with flash attention 2 and a context length of 8192.
|
62 |
+
|
63 |
+
Recipe used with the handbook:
|
64 |
+
|
65 |
+
```
|
66 |
+
# Model arguments
|
67 |
+
model_name_or_path: Rijgersberg/GEITje-7B
|
68 |
+
model_revision: main
|
69 |
+
torch_dtype: bfloat16
|
70 |
+
use_flash_attention_2: true
|
71 |
+
|
72 |
+
# Data training arguments
|
73 |
+
# Zephyr chat template
|
74 |
+
chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
75 |
+
dataset_mixer:
|
76 |
+
BramVanroy/ultrachat_200k_dutch: 1.0
|
77 |
+
BramVanroy/stackoverflow-chat-dutch: 0.5
|
78 |
+
BramVanroy/alpaca-cleaned-dutch: 1.0
|
79 |
+
BramVanroy/dolly-15k-dutch: 1.0
|
80 |
+
BramVanroy/no_robots_dutch: 1.0
|
81 |
+
dataset_splits:
|
82 |
+
- train_sft
|
83 |
+
- test_sft
|
84 |
+
preprocessing_num_workers: 8
|
85 |
+
|
86 |
+
# SFT trainer config
|
87 |
+
bf16: true
|
88 |
+
do_eval: true
|
89 |
+
evaluation_strategy: epoch
|
90 |
+
gradient_accumulation_steps: 1
|
91 |
+
gradient_checkpointing: true
|
92 |
+
gradient_checkpointing_kwargs:
|
93 |
+
use_reentrant: False
|
94 |
+
hub_model_id: GEITje-ultra-sft
|
95 |
+
hub_strategy: every_save
|
96 |
+
learning_rate: 2.0e-05
|
97 |
+
log_level: info
|
98 |
+
logging_steps: 5
|
99 |
+
logging_strategy: steps
|
100 |
+
lr_scheduler_type: cosine
|
101 |
+
max_seq_length: 8192
|
102 |
+
max_steps: -1
|
103 |
+
num_train_epochs: 1
|
104 |
+
output_dir: data/GEITje-ultra-sft
|
105 |
+
overwrite_output_dir: true
|
106 |
+
per_device_eval_batch_size: 8
|
107 |
+
per_device_train_batch_size: 16
|
108 |
+
push_to_hub: true
|
109 |
+
remove_unused_columns: true
|
110 |
+
report_to:
|
111 |
+
- wandb
|
112 |
+
save_strategy: "steps"
|
113 |
+
save_steps: 100
|
114 |
+
save_total_limit: 1
|
115 |
+
seed: 42
|
116 |
+
warmup_ratio: 0.1
|
117 |
+
```
|
118 |
|
119 |
The model was trained on two nodes of four A100 80GB each for around 2.5 hours. I thank the [Flemish Super Computer](https://www.vscentrum.be/compute) for their compute.
|
120 |
|