File size: 2,894 Bytes
385c3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Moroccan-Darija-STT-small-v1.6.11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Moroccan-Darija-STT-small-v1.6.11

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6266
- Wer: 98.5442
- Cer: 85.3893

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.25e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 6

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      | Cer     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|
| 0.3624        | 0.3030 | 30   | 0.6341          | 100.3430 | 92.3044 |
| 0.3091        | 0.6061 | 60   | 0.5572          | 98.1760  | 83.6191 |
| 0.2958        | 0.9091 | 90   | 0.5413          | 98.3350  | 84.3521 |
| 0.2854        | 1.2121 | 120  | 0.5639          | 98.9207  | 88.2523 |
| 0.276         | 1.5152 | 150  | 0.6350          | 98.8119  | 88.2742 |
| 0.2764        | 1.8182 | 180  | 0.6088          | 98.7199  | 86.9500 |
| 0.2609        | 2.1212 | 210  | 0.6280          | 98.5776  | 86.2541 |
| 0.2658        | 2.4242 | 240  | 0.6107          | 98.6529  | 86.9973 |
| 0.2494        | 2.7273 | 270  | 0.6355          | 99.0629  | 88.0226 |
| 0.2419        | 3.0303 | 300  | 0.6267          | 98.9709  | 86.8537 |
| 0.2458        | 3.3333 | 330  | 0.6331          | 99.0295  | 85.8605 |
| 0.2273        | 3.6364 | 360  | 0.6155          | 98.3517  | 83.8893 |
| 0.2491        | 3.9394 | 390  | 0.6208          | 98.8788  | 86.0531 |
| 0.2419        | 4.2424 | 420  | 0.6260          | 98.6780  | 82.9046 |
| 0.2387        | 4.5455 | 450  | 0.6294          | 98.8454  | 85.9652 |
| 0.2282        | 4.8485 | 480  | 0.6209          | 98.7199  | 86.4129 |
| 0.228         | 5.1515 | 510  | 0.6260          | 99.0880  | 85.6730 |
| 0.2403        | 5.4545 | 540  | 0.6504          | 99.1801  | 85.9720 |
| 0.227         | 5.7576 | 570  | 0.6266          | 98.5442  | 85.3893 |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0