File size: 2,894 Bytes
385c3a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Moroccan-Darija-STT-small-v1.6.11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Moroccan-Darija-STT-small-v1.6.11
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6266
- Wer: 98.5442
- Cer: 85.3893
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.25e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|
| 0.3624 | 0.3030 | 30 | 0.6341 | 100.3430 | 92.3044 |
| 0.3091 | 0.6061 | 60 | 0.5572 | 98.1760 | 83.6191 |
| 0.2958 | 0.9091 | 90 | 0.5413 | 98.3350 | 84.3521 |
| 0.2854 | 1.2121 | 120 | 0.5639 | 98.9207 | 88.2523 |
| 0.276 | 1.5152 | 150 | 0.6350 | 98.8119 | 88.2742 |
| 0.2764 | 1.8182 | 180 | 0.6088 | 98.7199 | 86.9500 |
| 0.2609 | 2.1212 | 210 | 0.6280 | 98.5776 | 86.2541 |
| 0.2658 | 2.4242 | 240 | 0.6107 | 98.6529 | 86.9973 |
| 0.2494 | 2.7273 | 270 | 0.6355 | 99.0629 | 88.0226 |
| 0.2419 | 3.0303 | 300 | 0.6267 | 98.9709 | 86.8537 |
| 0.2458 | 3.3333 | 330 | 0.6331 | 99.0295 | 85.8605 |
| 0.2273 | 3.6364 | 360 | 0.6155 | 98.3517 | 83.8893 |
| 0.2491 | 3.9394 | 390 | 0.6208 | 98.8788 | 86.0531 |
| 0.2419 | 4.2424 | 420 | 0.6260 | 98.6780 | 82.9046 |
| 0.2387 | 4.5455 | 450 | 0.6294 | 98.8454 | 85.9652 |
| 0.2282 | 4.8485 | 480 | 0.6209 | 98.7199 | 86.4129 |
| 0.228 | 5.1515 | 510 | 0.6260 | 99.0880 | 85.6730 |
| 0.2403 | 5.4545 | 540 | 0.6504 | 99.1801 | 85.9720 |
| 0.227 | 5.7576 | 570 | 0.6266 | 98.5442 | 85.3893 |
### Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
|