--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-agent-scam-classifier-v1.0 results: [] --- # bert-agent-scam-classifier-v1.0 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0039 - Accuracy: {'accuracy': 0.996875} - Precision: {'precision': 0.996894409937888} - Recall: {'recall': 0.996875} - F1: {'f1': 0.9968749694821237} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------------------------------:|:--------------------:|:--------------------------:| | No log | 1.0 | 160 | 0.0032 | {'accuracy': 0.996875} | {'precision': 0.996894409937888} | {'recall': 0.996875} | {'f1': 0.9968749694821237} | | No log | 2.0 | 320 | 0.0033 | {'accuracy': 0.996875} | {'precision': 0.996894409937888} | {'recall': 0.996875} | {'f1': 0.9968749694821237} | | No log | 3.0 | 480 | 0.0034 | {'accuracy': 0.996875} | {'precision': 0.996894409937888} | {'recall': 0.996875} | {'f1': 0.9968749694821237} | | 0.0354 | 4.0 | 640 | 0.0034 | {'accuracy': 0.996875} | {'precision': 0.996894409937888} | {'recall': 0.996875} | {'f1': 0.9968749694821237} | | 0.0354 | 5.0 | 800 | 0.0039 | {'accuracy': 0.996875} | {'precision': 0.996894409937888} | {'recall': 0.996875} | {'f1': 0.9968749694821237} | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1