|
""" PyTorch ProteinGLM model. """ |
|
|
|
import math |
|
import copy |
|
import warnings |
|
import re |
|
import sys |
|
import os |
|
import pathlib |
|
import time |
|
import random |
|
import numpy as np |
|
from tqdm.auto import tqdm |
|
|
|
import torch, deepspeed |
|
import torch.utils.checkpoint |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss |
|
from torch.nn.utils import skip_init |
|
from typing import Optional, Tuple, Union, List, Callable, Dict, Any |
|
from copy import deepcopy |
|
from collections import namedtuple |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
MaskedLMOutput, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput |
|
) |
|
from transformers import PreTrainedModel |
|
from transformers.utils import logging |
|
from transformers.generation.logits_process import LogitsProcessor |
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput |
|
|
|
from .configuration_proteinglm import ProteinGLMConfig |
|
from .quantization import quantize |
|
|
|
def get_checkpoint_fn(): |
|
if deepspeed.checkpointing.is_configured(): |
|
checkpoint = deepspeed.checkpointing.checkpoint |
|
else: |
|
checkpoint = torch.utils.checkpoint.checkpoint |
|
return checkpoint |
|
|
|
|
|
|
|
if sys.platform != 'darwin': |
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_override_can_fuse_on_cpu(True) |
|
torch._C._jit_override_can_fuse_on_gpu(True) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "Bo1015/proteinglm-100b-int4" |
|
_CONFIG_FOR_DOC = "ProteinGLMConfig" |
|
DeepNormCoefficients = namedtuple("DeepNormCoefficients", ["alpha", "beta"]) |
|
|
|
def default_init(cls, *args, **kwargs): |
|
return cls(*args, **kwargs) |
|
|
|
|
|
def get_deepnorm_coefficients(config: ProteinGLMConfig): |
|
""" |
|
DeepNorm coefficients from : https://kexue.fm/archives/8978 |
|
""" |
|
num_layers = config.num_layers |
|
return DeepNormCoefficients(alpha=(2 * num_layers) ** 0.5, beta=(2 * num_layers) ** -0.5) |
|
|
|
|
|
class InvalidScoreLogitsProcessor(LogitsProcessor): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
if torch.isnan(scores).any() or torch.isinf(scores).any(): |
|
scores.zero_() |
|
scores[..., 5] = 5e4 |
|
return scores |
|
|
|
|
|
def split_tensor_along_last_dim( |
|
tensor: torch.Tensor, |
|
num_partitions: int, |
|
contiguous_split_chunks: bool = False, |
|
) -> List[torch.Tensor]: |
|
"""Split a tensor along its last dimension. |
|
|
|
Arguments: |
|
tensor: input tensor. |
|
num_partitions: number of partitions to split the tensor |
|
contiguous_split_chunks: If True, make each chunk contiguous |
|
in memory. |
|
|
|
Returns: |
|
A list of Tensors |
|
""" |
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = tensor.size()[last_dim] // num_partitions |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
|
|
def __init__(self, dim, base=10000, precision=torch.half, learnable=False): |
|
super().__init__() |
|
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)).to(precision) |
|
self.dim = dim |
|
self.base = base |
|
self.learnable = learnable |
|
if learnable: |
|
self.inv_freq = torch.nn.Parameter(inv_freq) |
|
self.max_seq_len_cached = None |
|
else: |
|
self.register_buffer('inv_freq', inv_freq) |
|
self.max_seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
self.precision = precision |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
if f'{prefix}inv_freq' in state_dict: |
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
else: |
|
self.inv_freq.copy_(1. / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)).to(self.precision)) |
|
|
|
def forward(self, x, seq_dim=1, seq_len=None): |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached): |
|
self.max_seq_len_cached = None if self.learnable else seq_len |
|
t = torch.arange(seq_len, device=x.device, dtype=torch.float32) |
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq.to(x.device)) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
if self.precision == torch.bfloat16 or self.precision == torch.half: |
|
emb = emb.float() |
|
|
|
cos_cached = emb.cos()[:, None, :] |
|
sin_cached = emb.sin()[:, None, :] |
|
if self.precision == torch.bfloat16: |
|
cos_cached = cos_cached.bfloat16() |
|
sin_cached = sin_cached.bfloat16() |
|
elif self.precision == torch.half: |
|
cos_cached = cos_cached.half() |
|
sin_cached = sin_cached.half() |
|
if self.learnable: |
|
return cos_cached, sin_cached |
|
self.cos_cached, self.sin_cached = cos_cached, sin_cached |
|
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] |
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
def assert_dim_check(tensor, ndim=None, shape=None): |
|
if ndim is not None: |
|
assert tensor.ndim == ndim, f"Exepct tensor.ndim={ndim}. gut got tensor.shape={tensor.shape}" |
|
if shape is not None: |
|
assert list(tensor.shape) == list(shape), f"Exepct tensor.shape={shape}. gut got tensor.shape={tensor.shape}" |
|
|
|
def apply_rotary_pos_emb_index_torch(q, k, cos, sin, position_id): |
|
|
|
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \ |
|
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2) |
|
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
return q, k |
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) |
|
self.eps = eps |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) |
|
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
class CoreAttention(torch.nn.Module): |
|
def __init__(self, config: ProteinGLMConfig, layer_number): |
|
super(CoreAttention, self).__init__() |
|
|
|
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling |
|
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 |
|
if self.apply_query_key_layer_scaling: |
|
self.attention_softmax_in_fp32 = True |
|
self.layer_number = max(1, layer_number) |
|
|
|
projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
|
|
self.hidden_size_per_partition = projection_size |
|
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
coeff = None |
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) |
|
if self.apply_query_key_layer_scaling: |
|
coeff = self.layer_number |
|
self.norm_factor *= coeff |
|
self.coeff = coeff |
|
|
|
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) |
|
|
|
self.is_causal = config.is_causal |
|
self.use_pytorch_sdpa = config.use_pytorch_sdpa |
|
|
|
def forward(self, query_layer, key_layer, value_layer, attention_mask): |
|
|
|
|
|
pytorch_major_version = int(torch.__version__.split('.')[0]) |
|
|
|
if pytorch_major_version >= 2 and self.use_pytorch_sdpa: |
|
dropout_p = self.attention_dropout.p if self.training else 0 |
|
|
|
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]] |
|
|
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: |
|
|
|
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, is_causal=self.is_causal, dropout_p=dropout_p) |
|
else: |
|
if (attention_mask is not None) and (attention_mask.dtype == torch.bool): |
|
attention_mask = attention_mask.logical_not() |
|
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attention_mask, dropout_p=dropout_p) |
|
|
|
context_layer = context_layer.permute(2, 0, 1, 3) |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) |
|
context_layer = context_layer.reshape(*new_context_layer_shape) |
|
else: |
|
|
|
|
|
|
|
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) |
|
|
|
|
|
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) |
|
|
|
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) |
|
|
|
|
|
matmul_input_buffer = torch.empty( |
|
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, |
|
device=query_layer.device |
|
) |
|
|
|
|
|
matmul_result = torch.baddbmm( |
|
matmul_input_buffer, |
|
query_layer.transpose(0, 1), |
|
key_layer.transpose(0, 1).transpose(1, 2), |
|
beta=0.0, |
|
alpha=(1.0 / self.norm_factor), |
|
) |
|
|
|
|
|
attention_scores = matmul_result.view(*output_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.attention_softmax_in_fp32: |
|
attention_scores = attention_scores.float() |
|
if self.coeff is not None: |
|
attention_scores = attention_scores * self.coeff |
|
if self.is_causal and attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: |
|
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], |
|
device=attention_scores.device, dtype=torch.bool) |
|
attention_mask.tril_() |
|
attention_mask = ~attention_mask |
|
if attention_mask is not None: |
|
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) |
|
attention_probs = F.softmax(attention_scores, dim=-1) |
|
attention_probs = attention_probs.type_as(value_layer) |
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) |
|
|
|
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) |
|
|
|
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) |
|
|
|
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) |
|
|
|
context_layer = context_layer.view(*output_size) |
|
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
return context_layer |
|
|
|
|
|
class SelfAttention(torch.nn.Module): |
|
"""Parallel self-attention layer abstract class. |
|
|
|
Self-attention layer takes input with size [s, b, h] |
|
and returns output of the same size. |
|
""" |
|
|
|
def __init__(self, config: ProteinGLMConfig, layer_number, device=None): |
|
super(SelfAttention, self).__init__() |
|
self.layer_number = max(1, layer_number) |
|
|
|
self.projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
|
|
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
self.multi_query_attention = config.multi_query_attention |
|
self.qkv_hidden_size = 3 * self.projection_size |
|
if self.multi_query_attention: |
|
self.num_multi_query_groups_per_partition = config.multi_query_group_num |
|
self.qkv_hidden_size = ( |
|
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num |
|
) |
|
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size, |
|
bias=config.add_bias_linear or config.add_qkv_bias, |
|
device=device, **_config_to_kwargs(config) |
|
) |
|
|
|
self.core_attention = CoreAttention(config, self.layer_number) |
|
|
|
|
|
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config)) |
|
|
|
self.rotary_embedding_2d = config.rotary_embedding_2d |
|
|
|
self.rotary_emb = RotaryEmbedding(self.hidden_size_per_attention_head // 2 if self.rotary_embedding_2d else self.hidden_size_per_attention_head, |
|
base=10000, precision=config.torch_dtype, learnable=False) |
|
|
|
|
|
def forward( |
|
self, hidden_states, attention_mask, position_ids, kv_cache=None, use_cache=True |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
|
|
if self.multi_query_attention: |
|
(query_layer, key_layer, value_layer) = mixed_x_layer.split( |
|
[ |
|
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, |
|
], |
|
dim=-1, |
|
) |
|
query_layer = query_layer.view( |
|
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) |
|
) |
|
key_layer = key_layer.view( |
|
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) |
|
) |
|
value_layer = value_layer.view( |
|
value_layer.size()[:-1] |
|
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) |
|
) |
|
else: |
|
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head) |
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) |
|
|
|
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) |
|
|
|
|
|
if position_ids is not None: |
|
|
|
if self.rotary_embedding_2d: |
|
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1)) |
|
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1)) |
|
|
|
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1) |
|
position_ids, block_position_ids = \ |
|
position_ids[:, 0, :].transpose(0, 1).contiguous(), \ |
|
position_ids[:, 1, :].transpose(0, 1).contiguous() |
|
q1, k1 = apply_rotary_pos_emb_index_torch(q1, k1, cos, sin, position_ids) |
|
q2, k2 = apply_rotary_pos_emb_index_torch(q2, k2, cos, sin, block_position_ids) |
|
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1)) |
|
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1)) |
|
else: |
|
|
|
position_ids = position_ids.transpose(0, 1) |
|
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1) |
|
query_layer, key_layer = apply_rotary_pos_emb_index_torch(query_layer, key_layer, cos, sin, position_ids) |
|
|
|
|
|
if kv_cache is not None: |
|
cache_k, cache_v = kv_cache |
|
key_layer = torch.cat((cache_k, key_layer), dim=0) |
|
value_layer = torch.cat((cache_v, value_layer), dim=0) |
|
if use_cache: |
|
kv_cache = (key_layer, value_layer) |
|
else: |
|
kv_cache = None |
|
|
|
if self.multi_query_attention: |
|
key_layer = key_layer.unsqueeze(-2) |
|
key_layer = key_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1) |
|
key_layer = key_layer.contiguous().view(key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) |
|
value_layer = value_layer.unsqueeze(-2) |
|
value_layer = value_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1) |
|
value_layer = value_layer.contiguous().view(value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) |
|
|
|
|
|
|
|
|
|
|
|
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) |
|
output = self.dense(context_layer) |
|
|
|
|
|
|
|
|
|
|
|
return output, kv_cache |
|
|
|
|
|
def _config_to_kwargs(args): |
|
common_kwargs = { |
|
"dtype": args.torch_dtype, |
|
} |
|
return common_kwargs |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
"""MLP. |
|
|
|
MLP will take the input with h hidden state, project it to 4*h |
|
hidden dimension, perform nonlinear transformation, and project the |
|
state back into h hidden dimension. |
|
""" |
|
|
|
def __init__(self, config: ProteinGLMConfig, device=None): |
|
super(MLP, self).__init__() |
|
|
|
self.add_bias = config.add_bias_linear |
|
self.moe = config.moe |
|
self.num_experts = config.num_experts |
|
self.experts_per_token = config.experts_per_token |
|
|
|
|
|
self.dense_h_to_4h = nn.Linear( |
|
config.hidden_size, |
|
config.ffn_hidden_size * 2, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
) |
|
|
|
def swiglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return x[0] * F.silu(x[1]) |
|
|
|
def geglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return x[0] * F.gelu(x[1]) |
|
|
|
if config.glu_activation == 'geglu': |
|
self.activation_func = geglu |
|
elif config.glu_activation == 'swiglu': |
|
self.activation_func = swiglu |
|
else: |
|
assert RuntimeError(f"Unsupported glu_activation: {config.glu_activation}") |
|
|
|
|
|
self.dense_4h_to_h = nn.Linear( |
|
config.ffn_hidden_size, |
|
config.hidden_size, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
) |
|
|
|
if self.moe: |
|
assert self.num_experts > 1 |
|
del self.dense_h_to_4h |
|
del self.dense_4h_to_h |
|
self.router = nn.Linear( |
|
config.hidden_size, |
|
config.num_experts, |
|
bias=False, |
|
device=device, |
|
dtype=torch.float32 |
|
) |
|
for i in range(0, self.num_experts): |
|
self.register_module(f"dense_h_to_4h_{i}", nn.Linear( |
|
config.hidden_size, |
|
config.ffn_hidden_size * 2, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
)) |
|
self.register_module(f"dense_4h_to_h_{i}", nn.Linear( |
|
config.ffn_hidden_size, |
|
config.hidden_size, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
)) |
|
|
|
def moe_forward(self, hidden_states, expert_idx): |
|
intermediate_parallel = getattr(self, f"dense_h_to_4h_{expert_idx}")(hidden_states) |
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
output = getattr(self, f"dense_4h_to_h_{expert_idx}")(intermediate_parallel) |
|
return output |
|
|
|
def forward(self, hidden_states): |
|
if self.moe: |
|
|
|
s, b, n = hidden_states.shape |
|
dtype = hidden_states.dtype |
|
hidden_states = hidden_states.view(-1, hidden_states.size(2)) |
|
route = self.router(hidden_states).to(dtype) |
|
|
|
weights, selected_experts = torch.topk(route, self.experts_per_token) |
|
weights = F.softmax(weights, dim=1, dtype=torch.float).to(hidden_states.dtype) |
|
output = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) |
|
for expert_idx in range(self.num_experts): |
|
batch_idx, nth_expert = torch.where(selected_experts == expert_idx) |
|
if nth_expert.shape[0] == 0: |
|
continue |
|
cur_out = self.moe_forward(hidden_states[batch_idx], expert_idx) |
|
output[batch_idx] += weights[batch_idx, nth_expert, None] * cur_out |
|
output = output.reshape(s, b, n) |
|
else: |
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states) |
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
|
|
output = self.dense_4h_to_h(intermediate_parallel) |
|
return output |
|
|
|
class ProteinGLMBlock(torch.nn.Module): |
|
"""A single transformer layer. |
|
|
|
Transformer layer takes input with size [s, b, h] and returns an |
|
output of the same size. |
|
""" |
|
|
|
def __init__(self, config: ProteinGLMConfig, layer_number, device=None): |
|
super(ProteinGLMBlock, self).__init__() |
|
self.layer_number = layer_number |
|
|
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm |
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
|
|
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm |
|
|
|
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon) |
|
|
|
|
|
self.self_attention = SelfAttention(config, layer_number, device=device) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
|
|
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon) |
|
|
|
|
|
self.mlp = MLP(config, device=device) |
|
|
|
self.deepnorm_coeff = get_deepnorm_coefficients(config) if config.deepnorm else None |
|
|
|
def forward( |
|
self, hidden_states, attention_mask, position_ids, kv_cache=None, use_cache=True, |
|
): |
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
attention_output, kv_cache = self.self_attention( |
|
layernorm_output, |
|
attention_mask, |
|
position_ids, |
|
kv_cache=kv_cache, |
|
use_cache=use_cache |
|
) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) |
|
if self.deepnorm_coeff is not None: |
|
layernorm_input = residual*self.deepnorm_coeff.alpha + layernorm_input |
|
else: |
|
layernorm_input = residual + layernorm_input |
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = layernorm_input |
|
|
|
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) |
|
if self.deepnorm_coeff is not None: |
|
output = residual*self.deepnorm_coeff.alpha + output |
|
else: |
|
|
|
output = residual + output |
|
|
|
return output, kv_cache |
|
|
|
|
|
class ProteinGLMTransformer(torch.nn.Module): |
|
"""Transformer class.""" |
|
|
|
def __init__(self, config: ProteinGLMConfig, device=None): |
|
super(ProteinGLMTransformer, self).__init__() |
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
self.post_layer_norm = config.post_layer_norm |
|
|
|
|
|
self.num_layers = config.num_layers |
|
|
|
|
|
def build_layer(layer_number): |
|
return ProteinGLMBlock(config, layer_number, device=device) |
|
|
|
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) |
|
|
|
if self.post_layer_norm: |
|
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm |
|
|
|
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _get_layer(self, layer_number): |
|
return self.layers[layer_number] |
|
|
|
def forward( |
|
self, hidden_states, attention_mask, position_ids, kv_caches=None, |
|
use_cache: Optional[bool] = True, |
|
output_hidden_states: Optional[bool] = False, |
|
): |
|
if not kv_caches: |
|
kv_caches = [None for _ in range(self.num_layers)] |
|
presents = () if use_cache else None |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
all_self_attentions = None |
|
all_hidden_states = () if output_hidden_states else None |
|
for index in range(self.num_layers): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer = self._get_layer(index) |
|
if self.gradient_checkpointing and self.training and torch.is_grad_enabled(): |
|
layer_ret = get_checkpoint_fn()( |
|
layer, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
kv_caches[index], |
|
use_cache |
|
) |
|
else: |
|
layer_ret = layer( |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
kv_cache=kv_caches[index], |
|
use_cache=use_cache |
|
) |
|
hidden_states, kv_cache = layer_ret |
|
if use_cache: |
|
presents = presents + (kv_cache,) |
|
|
|
|
|
|
|
if self.post_layer_norm: |
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
return hidden_states, presents, all_hidden_states, all_self_attentions |
|
|
|
|
|
class ProteinGLMPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
is_parallelizable = False |
|
supports_gradient_checkpointing = True |
|
config_class = ProteinGLMConfig |
|
base_model_prefix = "transformer" |
|
_no_split_modules = ["ProteinGLMBlock"] |
|
|
|
_quantized = False |
|
|
|
|
|
def get_masks(self, input_ids, past_key_values, padding_mask=None, is_causal=True): |
|
batch_size, seq_length = input_ids.shape |
|
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) |
|
if is_causal: |
|
full_attention_mask.tril_() |
|
past_length = 0 |
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[0] |
|
if past_length: |
|
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, |
|
device=input_ids.device), full_attention_mask), dim=-1) |
|
if padding_mask is not None: |
|
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) |
|
if not past_length and padding_mask is not None: |
|
full_attention_mask -= padding_mask.unsqueeze(-1) - 1 |
|
full_attention_mask = (full_attention_mask < 0.5).bool() |
|
full_attention_mask.unsqueeze_(1) |
|
return full_attention_mask |
|
|
|
def get_position_ids(self, input_ids, device, context_length=0): |
|
batch_size, seq_length = input_ids.shape |
|
if self.config.rotary_embedding_2d: |
|
if self.config.is_causal: |
|
position_ids_1 = torch.zeros(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
position_ids_2 = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
position_ids = torch.stack([position_ids_1, position_ids_2], axis=1) |
|
else: |
|
position_ids_1 = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
position_ids_2 = torch.zeros(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
position_ids = torch.stack([position_ids_1, position_ids_2], axis=1) |
|
else: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
return position_ids |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ProteinGLMTransformer): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def quantize(self, weight_bit_width: int, empty_init=True, device=None): |
|
if self._quantized: |
|
print(f"Model has been quantized...") |
|
return |
|
self.transformer.encoder = quantize(self.transformer.encoder, weight_bit_width, empty_init, device) |
|
self._quantized = True |
|
return self |
|
|
|
class Embedding(torch.nn.Module): |
|
"""Language model embeddings.""" |
|
|
|
def __init__(self, config: ProteinGLMConfig, device=None): |
|
super(Embedding, self).__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embeddings = nn.Embedding( |
|
config.padded_vocab_size, |
|
self.hidden_size, |
|
dtype=config.torch_dtype, |
|
device=device |
|
) |
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
|
|
|
|
def forward(self, input_ids): |
|
|
|
words_embeddings = self.word_embeddings(input_ids) |
|
embeddings = words_embeddings |
|
|
|
embeddings = embeddings.transpose(0, 1).contiguous() |
|
|
|
if self.fp32_residual_connection: |
|
embeddings = embeddings.float() |
|
return embeddings |
|
|
|
class ProteinGLMModel(ProteinGLMPreTrainedModel): |
|
def __init__(self, config: ProteinGLMConfig, device=None, empty_init=True): |
|
super().__init__(config) |
|
if empty_init: |
|
init_method = skip_init |
|
else: |
|
init_method = default_init |
|
init_kwargs = {} |
|
if device is not None: |
|
init_kwargs["device"] = device |
|
self.embedding = init_method(Embedding, config, **init_kwargs) |
|
self.num_layers = config.num_layers |
|
self.multi_query_group_num = config.multi_query_group_num |
|
self.kv_channels = config.kv_channels |
|
|
|
|
|
self.seq_length = config.seq_length |
|
rotary_dim = ( |
|
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels |
|
) |
|
|
|
|
|
self.encoder = init_method(ProteinGLMTransformer, config, **init_kwargs) |
|
|
|
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, |
|
dtype=config.torch_dtype, **init_kwargs) |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embedding.word_embeddings = value |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
full_attention_mask: Optional[torch.BoolTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
if self.config.is_causal: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
if full_attention_mask is None: |
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): |
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) |
|
|
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( |
|
inputs_embeds, full_attention_mask, position_ids=position_ids, |
|
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states |
|
) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ProteinGLMForMaskedLM(ProteinGLMPreTrainedModel): |
|
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
|
|
self.max_sequence_length = config.max_length |
|
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device) |
|
self.config = config |
|
if self.config.quantization_bit: |
|
print(f"Begin Quantization to {self.config.quantization_bit} bit") |
|
self.quantize(self.config.quantization_bit, empty_init=True, device=device) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = None, |
|
return_last_hidden_state: Optional[bool] = None |
|
): |
|
if self.config.is_causal: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
|
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal=self.config.is_causal) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
full_attention_mask=full_attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
if return_last_logit: |
|
hidden_states = hidden_states[-1:] |
|
lm_logits = self.transformer.output_layer(hidden_states) |
|
lm_logits = lm_logits.transpose(0, 1).contiguous() |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
return MaskedLMOutput( |
|
loss = masked_lm_loss, |
|
logits=lm_logits, |
|
hidden_states=transformer_outputs.last_hidden_state if return_last_hidden_state else transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
|
|
class ProteinGLMForSequenceClassification(ProteinGLMPreTrainedModel): |
|
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
self.config = config |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device) |
|
self.classifier = ProteinGLMClassificationHead(config) |
|
if self.config.quantization_bit: |
|
print(f"Begin Quantization to {self.config.quantization_bit} bit") |
|
self.quantize(self.config.quantization_bit, empty_init=True, device=device) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = None, |
|
return_last_hidden_state: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
if self.config.is_causal: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
|
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal=self.config.is_causal) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
full_attention_mask=full_attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
if self.config.add_special_tokens: |
|
hidden_states = transformer_outputs[0][:-1] |
|
else: |
|
hidden_states = transformer_outputs[0] |
|
logits = self.classifier(hidden_states, add_pooling=True) |
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
|
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
class ProteinGLMForTokenClassification(ProteinGLMPreTrainedModel): |
|
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
self.config = config |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device) |
|
if config.task_modality == "token": |
|
self.classifier = ProteinGLMClassificationHead(config) |
|
elif config.task_modality == 'pair': |
|
self.classifier = ProteinGLMContactHead(config) |
|
|
|
self.quantized = False |
|
|
|
if self.config.quantization_bit: |
|
print(f"Begin Quantization to {self.config.quantization_bit} bit") |
|
self.quantize(self.config.quantization_bit, empty_init=True, device=device) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = None, |
|
return_last_hidden_state: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
if self.config.is_causal: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
|
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal = self.config.is_causal) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
full_attention_mask=full_attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
if self.config.add_special_tokens: |
|
hidden_states = transformer_outputs[0][:-1] |
|
else: |
|
hidden_states = transformer_outputs[0] |
|
|
|
logits = self.classifier(hidden_states, add_pooling=False) |
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class ProteinGLMClassificationHead(nn.Module): |
|
"""Head for classification tasks.""" |
|
def __init__(self, config): |
|
super().__init__() |
|
self.activation_func = config.activation_func |
|
self.layers = torch.nn.ModuleList() |
|
last_size = config.hidden_size |
|
for sz in config.inter_hidden_size: |
|
this_layer = torch.nn.Linear(last_size, sz, bias=config.bias) |
|
last_size = sz |
|
self.layers.append(this_layer) |
|
|
|
def forward(self, |
|
input_features, |
|
add_pooling: Optional[bool] = True |
|
): |
|
|
|
input_features = input_features.transpose(0,1).contiguous() |
|
if add_pooling: |
|
|
|
input_features = torch.mean(input_features, dim = 1) |
|
for i, layer in enumerate(self.layers): |
|
if i > 0: |
|
input_features = self.activation_func(input_features) |
|
input_features = layer(input_features) |
|
return input_features |
|
|
|
class ProteinGLMContactHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
def __init__(self, config): |
|
super().__init__() |
|
self.activation_func = config.activation_func |
|
self.layers = torch.nn.ModuleList() |
|
last_size = config.hidden_size * 2 |
|
for sz in config.inter_hidden_size: |
|
this_layer = torch.nn.Linear(last_size, sz, bias=config.bias) |
|
last_size = sz |
|
self.layers.append(this_layer) |
|
|
|
def outer_concat(self, x): |
|
batch_size, seq_len, features = x.shape |
|
|
|
|
|
x = x.permute(0, 2, 1) |
|
|
|
|
|
x_1 = x[:, None, :, :, None] |
|
x_2 = x[:, None, :, None, :] |
|
|
|
|
|
x_1 = x_1.repeat(1, 1, 1, 1, seq_len) |
|
x_2 = x_2.repeat(1, 1, 1, seq_len, 1) |
|
|
|
|
|
x = torch.cat((x_1, x_2), dim=1) |
|
|
|
|
|
I, J = torch.tril_indices(seq_len, seq_len, -1) |
|
|
|
|
|
x[:, :, :, I, J] = x[:, :, :, J, I] |
|
|
|
|
|
x = x.permute(0, 3, 4, 2, 1).contiguous() |
|
|
|
|
|
x = x.view(batch_size, seq_len, seq_len, features * 2) |
|
|
|
return x |
|
|
|
def forward(self, |
|
input_features, |
|
add_pooling: Optional[bool] = True |
|
): |
|
|
|
input_features = input_features.transpose(0,1).contiguous() |
|
input_features = self.outer_concat(input_features) |
|
for i, layer in enumerate(self.layers): |
|
if i > 0: |
|
input_features = self.activation_func(input_features) |
|
input_features = layer(input_features) |
|
return input_features |
|
|
|
|
|
|
|
|
|
|
|
class ProteinGLMForCasualLM(ProteinGLMPreTrainedModel): |
|
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
|
|
self.max_sequence_length = config.max_length |
|
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device) |
|
self.config = config |
|
if self.config.quantization_bit: |
|
print(f"Begin Quantization to {self.config.quantization_bit} bit") |
|
self.quantize(self.config.quantization_bit, empty_init=True, device=device) |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
) -> Dict[str, Any]: |
|
|
|
cache_name, cache = self._extract_past_from_model_output(outputs) |
|
model_kwargs[cache_name] = cache |
|
|
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
|
|
|
|
if "position_ids" in model_kwargs: |
|
position_ids = model_kwargs["position_ids"] |
|
new_position_id = position_ids[..., -1:].clone() |
|
if self.config.rotary_embedding_2d: |
|
new_position_id[:, 1] += 1 |
|
else: |
|
new_position_id[:] += 1 |
|
model_kwargs["position_ids"] = torch.cat( |
|
[position_ids, new_position_id], dim=-1 |
|
) |
|
|
|
model_kwargs["is_first_forward"] = False |
|
return model_kwargs |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
is_first_forward: bool = True, |
|
**kwargs |
|
) -> dict: |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
if not is_first_forward: |
|
if past_key_values is not None: |
|
position_ids = position_ids[..., -1:] |
|
input_ids = input_ids[:, -1:] |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"return_last_logit": True, |
|
"use_cache": use_cache |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = False |
|
): |
|
if self.config.is_causal: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
hidden_states = transformer_outputs[0] |
|
if return_last_logit: |
|
hidden_states = hidden_states[-1:] |
|
lm_logits = self.transformer.output_layer(hidden_states) |
|
lm_logits = lm_logits.transpose(0, 1).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
return tuple( |
|
( |
|
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), |
|
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), |
|
) |
|
for layer_past in past |
|
) |
|
|
|
@torch.inference_mode() |
|
def chat(self, tokenizer, query: str, max_length: int = 256, num_beams=1, do_sample=True, |
|
top_p=1.0, temperature=1.0, logits_processor=None, **kwargs): |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InvalidScoreLogitsProcessor()) |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
inputs = tokenizer.apply_chat_template(query, add_generation_prompt=True, tokenize=True, |
|
return_tensors="pt", return_dict=True) |
|
position_ids = self.get_position_ids(inputs['input_ids'], device=self.device) |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")] |
|
inputs["position_ids"] = position_ids |
|
inputs = inputs.to(self.device) |
|
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id) |
|
outputs = outputs.tolist()[0][3:] |
|
if outputs[-1] in eos_token_id: |
|
outputs = outputs[:-1] |
|
response = tokenizer.decode(outputs) |
|
return response |
|
|
|
|
|
@torch.inference_mode() |
|
def stream_chat(self, tokenizer, query: str, max_length: int = 56, num_beams=1, do_sample=True, |
|
top_p=0.8, temperature=0.8, logits_processor=None, past_key_values = None, **kwargs): |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InvalidScoreLogitsProcessor()) |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")] |
|
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
inputs = tokenizer.apply_chat_template(query, add_generation_prompt=True, tokenize=True, |
|
return_tensors="pt", return_dict=True) |
|
position_ids = self.get_position_ids(inputs['input_ids'], device=self.device) |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")] |
|
inputs["position_ids"] = position_ids |
|
inputs = inputs.to(self.device) |
|
offset = 3 |
|
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values, |
|
eos_token_id=eos_token_id, return_past_key_values=False, |
|
**gen_kwargs): |
|
outputs = outputs.tolist()[0][3:] |
|
if outputs[-1] in eos_token_id: |
|
outputs = outputs[:-1] |
|
|
|
response = tokenizer.decode(outputs) |
|
if response: |
|
yield response |
|
|
|
@torch.inference_mode() |
|
def stream_generate( |
|
self, |
|
input_ids, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
return_past_key_values=False, |
|
**kwargs, |
|
): |
|
breakpoint() |
|
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] |
|
|
|
if generation_config is None: |
|
generation_config = self.generation_config |
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
model_kwargs["use_cache"] = generation_config.use_cache |
|
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id |
|
|
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None |
|
|
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None: |
|
warnings.warn( |
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " |
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" |
|
" recommend using `max_new_tokens` to control the maximum length of the generation.", |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length |
|
if not has_default_max_length: |
|
logger.warn( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co./docs/transformers/main/en/main_classes/text_generation)", |
|
UserWarning, |
|
) |
|
|
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" |
|
logger.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" |
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" |
|
" increasing `max_new_tokens`." |
|
) |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
|
|
logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
encoder_input_ids=input_ids, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
stopping_criteria = self._get_stopping_criteria( |
|
generation_config=generation_config, stopping_criteria=stopping_criteria |
|
) |
|
logits_warper = self._get_logits_warper(generation_config) |
|
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) |
|
scores = None |
|
while True: |
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
outputs = self( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
) |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
next_token_scores = logits_warper(input_ids, next_token_scores) |
|
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
if generation_config.do_sample: |
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
else: |
|
next_tokens = torch.argmax(probs, dim=-1) |
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder |
|
) |
|
unfinished_sequences = unfinished_sequences.mul( |
|
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) |
|
) |
|
if return_past_key_values: |
|
yield input_ids, outputs.past_key_values |
|
else: |
|
yield input_ids |
|
|
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): |
|
break |