--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-with-generate-finetune-indosum results: [] --- # bart-large-cnn-with-generate-finetune-indosum This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0686 - Rouge1: 0.8873 - Rouge2: 0.8491 - Rougel: 0.8815 - Rougelsum: 0.8815 - Gen Len: 128.9129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 0.2591 | 1.0 | 4460 | 0.2573 | 0.7218 | 0.6324 | 0.6969 | 0.6967 | 129.0612 | | 0.1657 | 2.0 | 8920 | 0.1600 | 0.7613 | 0.6815 | 0.7401 | 0.7401 | 128.9508 | | 0.0945 | 3.0 | 13380 | 0.1157 | 0.8001 | 0.7311 | 0.7837 | 0.7835 | 128.9105 | | 0.0508 | 4.0 | 17840 | 0.0976 | 0.8277 | 0.7704 | 0.8152 | 0.8152 | 129.0289 | | 0.0296 | 5.0 | 22300 | 0.0853 | 0.857 | 0.8087 | 0.8473 | 0.8471 | 128.9257 | | 0.0176 | 6.0 | 26760 | 0.0793 | 0.8702 | 0.8279 | 0.8632 | 0.8633 | 128.9113 | | 0.0112 | 7.0 | 31220 | 0.0605 | 0.8789 | 0.8377 | 0.872 | 0.8721 | 128.8637 | | 0.0074 | 8.0 | 35680 | 0.0597 | 0.88 | 0.84 | 0.8731 | 0.8732 | 128.9305 | | 0.005 | 9.0 | 40140 | 0.0658 | 0.8822 | 0.8433 | 0.8761 | 0.8761 | 128.949 | | 0.0036 | 10.0 | 44600 | 0.0686 | 0.8873 | 0.8491 | 0.8815 | 0.8815 | 128.9129 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.2