File size: 13,101 Bytes
e4a1b8f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff08bf07d00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff08bf07d90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff08bf07e20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff08bf07eb0>", "_build": "<function ActorCriticPolicy._build at 0x7ff08bf07f40>", "forward": "<function ActorCriticPolicy.forward at 0x7ff08bf10040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff08bf100d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff08bf10160>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff08bf101f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff08bf10280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff08bf10310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff08bf103a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff0939018c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700578391975485027, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAI0y873E0VU/GSiLPTAGm75ToD68/FQ8OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEPwVO9FnZmMAWyUTRkBjAF0lEdAnLowwTM7l3V9lChoBkdAbuZuk1uR92gHTZsBaAhHQJy9qXpnpSt1fZQoaAZHQG/+VNg0CRxoB01kAWgIR0Ccv6MMZxaQdX2UKGgGR0BwFsQpWmxdaAdNYQFoCEdAnMLDW5H3DnV9lChoBkdAbEvSSeRPoGgHTVoBaAhHQJzEuWLP2PF1fZQoaAZHQGvmNHpbD/FoB01yAWgIR0Ccxt/jsD4hdX2UKGgGR0Ar3RtP557gaAdNOgFoCEdAnMm6RdQfp3V9lChoBkdAcBD1rqMWGmgHTZoBaAhHQJzMAwEhaDB1fZQoaAZHQHEefqgRK6FoB02kAWgIR0CczlkUbkwOdX2UKGgGR0Bwm31/Ue+3aAdNaAFoCEdAnNFt0zTF2nV9lChoBkdAbpnWWhRIjGgHTX4BaAhHQJzTjWuoxYd1fZQoaAZHQGvowkxASnNoB02IAWgIR0Cc1uvn8sMBdX2UKGgGR0Bv80sMAmzCaAdNlgFoCEdAnNlreMyaeHV9lChoBkdAcEl2hZha1WgHTX0BaAhHQJzcJsVLzwt1fZQoaAZHQGGntu+AVfxoB03oA2gIR0Cc5NoxYaHcdX2UKGgGR0Bp5InWrfcfaAdNrAFoCEdAnOoNwaR6nnV9lChoBkdAcOYOVxCIDmgHTb0BaAhHQJztyWu5jH51fZQoaAZHQG3JGJN0vGpoB01bAWgIR0Cc8MHC4z7/dX2UKGgGR0Bsms7+1jRVaAdNlQFoCEdAnPS7aIvalHV9lChoBkdAcFIMPjGT92gHTX8BaAhHQJz2+4I8hcJ1fZQoaAZHQGzJlbu+h5BoB01bAWgIR0Cc+k9+gDigdX2UKGgGR0Bs4ahg3LmqaAdNYQFoCEdAnPxqx5cC5nV9lChoBkdAb7SGMXJo02gHTY8BaAhHQJz+y1x82Jl1fZQoaAZHQHByz5bhWHVoB02WAWgIR0CdAq93bEgodX2UKGgGR0BtVBZuAI6baAdNcAFoCEdAnQTsurZJ1HV9lChoBkfAEaPn0TURWmgHTR4BaAhHQJ0GovvjOs11fZQoaAZHQG9AxChN/ONoB016AWgIR0CdCkNi6QNkdX2UKGgGR0Bv4RptaY/naAdNVgFoCEdAnQxby+YdAHV9lChoBkdAcNjLgXMyJ2gHTXcBaAhHQJ0OnrOZ9eB1fZQoaAZHQGyAq0MPSUloB01+AWgIR0CdEfZgXuVpdX2UKGgGR0BFqqohpxm1aAdNSwFoCEdAnRPKHKwIMXV9lChoBkdAaQdCb+cYqGgHTY0BaAhHQJ0WDUrkKeF1fZQoaAZHwC1i2nbZezFoB00hAWgIR0CdGMwdKdxydX2UKGgGR8BAGJeu3c59aAdL6WgIR0CdGjxVyWAxdX2UKGgGR0Bsr4aFVT73aAdNYgFoCEdAnRzrIHTqjnV9lChoBkfAJQeWOZLIxWgHTSEBaAhHQJ0gY7GNrCZ1fZQoaAZHQG6PUlZ5iVloB01fAWgIR0CdIt7SiM5wdX2UKGgGR0A79iSq2jO+aAdNOgFoCEdAnSUlfeDWb3V9lChoBkdAQZXA9FF2FGgHTUMBaAhHQJ0pO9WZJCl1fZQoaAZHQHFwHtF8XvZoB01rAWgIR0CdLDg9vCMxdX2UKGgGR0BsVTQPZqVRaAdNUwFoCEdAnS8A1m8M/nV9lChoBkfAMkOndfsu4GgHTRUBaAhHQJ0y56fJ3gV1fZQoaAZHQHAWSgoPTXtoB01kAWgIR0CdNOVM23rldX2UKGgGR0BuBX2h7E5yaAdNUAFoCEdAnTa97jT8YXV9lChoBkc//DBO58Sf2GgHTRABaAhHQJ04MCCBf8d1fZQoaAZHQG/E2hAWznloB02NAWgIR0CdO2tL+PzWdX2UKGgGR0BxT1BD5TIeaAdNHANoCEdAnUDyL/CIlHV9lChoBkdAb+fkcS5AhWgHTWwBaAhHQJ1C+PIXCTF1fZQoaAZHQG9fFkpZwGZoB01OAWgIR0CdRM6qKgqWdX2UKGgGR0Axm3qAz544aAdNQAFoCEdAnUfFbeMyanV9lChoBkdAbaCwj+rEL2gHTdcBaAhHQJ1KdTo+wC91fZQoaAZHQGy0YTCcf/5oB01gAWgIR0CdTHCRwIdEdX2UKGgGR0Bbx1N5+pfhaAdN6ANoCEdAnVN2DL8rJHV9lChoBkfAKm4keIVM22gHTQ4BaAhHQJ1WGK64DtB1fZQoaAZHQHF01AeJYT1oB01jAWgIR0CdWBSThYNidX2UKGgGR0AmoXFcY64laAdNOwFoCEdAnVnYixFAmnV9lChoBkdAbrOLrHEMs2gHTWwBaAhHQJ1d0lMRHwx1fZQoaAZHQGHEUbLlmvpoB03oA2gIR0CdZp7dBSk1dX2UKGgGR0BwBxDG96C2aAdNrwFoCEdAnWoJUT+NtXV9lChoBkdAatLbD/EOy2gHTVABaAhHQJ1s202LpA51fZQoaAZHQG7j9Zq20AtoB02YAWgIR0Cdcfdt2s7udX2UKGgGR0BqbXxUedTYaAdNYQFoCEdAnXSUYj0L+nV9lChoBkdAcYmoScslLWgHTY8BaAhHQJ135RR/EwZ1fZQoaAZHQEeFrRBu4w1oB00aAWgIR0CdeXhH9WIXdX2UKGgGR0BilYvWYnfEaAdN6ANoCEdAnYA0PH1e0HV9lChoBkdAbz5FJg9eQmgHTTwBaAhHQJ2B8tWdVed1fZQoaAZHQHBTYSHuZ1FoB01wAWgIR0Cdg//ATIvKdX2UKGgGR0AYuoP07KaHaAdLuGgIR0CdhiC9AX2vdX2UKGgGR0BuX6w0O3DvaAdNVAFoCEdAnYgWp++dsnV9lChoBkdAbaKBhhH9WWgHTXcBaAhHQJ2KKYNRWLh1fZQoaAZHQG9pwK8cuJ1oB01uAWgIR0CdjVA9FF2FdX2UKGgGR0BgmOmUGFBZaAdN6ANoCEdAnZQLnoxHoXV9lChoBkdAcUltVrAP/mgHTZkBaAhHQJ2WWfvnbIt1fZQoaAZHQHAOfVqesgdoB01hAWgIR0CdmEfu1F6SdX2UKGgGR0BcN9dqtYCAaAdN6ANoCEdAnaAKVlf7anV9lChoBkdAbrQxh2GIsWgHTUQBaAhHQJ2j53Roh6l1fZQoaAZHQGv74+bExZdoB007AWgIR0CdpjnIQvpRdX2UKGgGR0BuiEqQRwqBaAdNKwFoCEdAnah1MmF8HHV9lChoBkdAbTh9JjDsMWgHTXcBaAhHQJ2tUBzV+Zx1fZQoaAZHQG6SDcEeQuFoB01rAWgIR0CdsF5YHPeIdX2UKGgGR0BwHyDEm6XjaAdNWgFoCEdAnbNFzIV/MHV9lChoBkdAbrw4JeE7GWgHTVQBaAhHQJ23DD4xk/d1fZQoaAZHQFm3gLZzxPRoB03oA2gIR0CdvcVrRBu5dX2UKGgGR0BsBLBO58SgaAdNbQFoCEdAnb/C8rZrYXV9lChoBkdAbh7vgm7aqWgHTYUBaAhHQJ3B9At4A0d1fZQoaAZHQHA6gYUFjd5oB02sAWgIR0CdxXKBNEgGdX2UKGgGR0BxF4+r2g3+aAdNzgFoCEdAncgQQ+UyHnV9lChoBkdAcDaixmkFfWgHTXsBaAhHQJ3LS6tknTl1fZQoaAZHQGwpZWzWwvBoB03SA2gIR0Cd0c4ubqhUdX2UKGgGR0BvC0c4o7V8aAdNfgFoCEdAndPsz67/XHV9lChoBkdAcfvzguRLb2gHTUABaAhHQJ3Vt44ZMtd1fZQoaAZHQGo6M10knkVoB01lAWgIR0Cd2Nd3B55adX2UKGgGR0BxUDqUu+RHaAdNaQFoCEdAndrXEqDsdHV9lChoBkfAJmW5xzaK12gHTQ0BaAhHQJ3cT3sXzlN1fZQoaAZHQHAFv9P1tfpoB01dAWgIR0Cd3/jaPCEYdX2UKGgGR0Bx1OgkC3gDaAdNSwFoCEdAneJl+mWMTHV9lChoBkdAa5SmVJL/TGgHTYcBaAhHQJ3lQmplz2h1fZQoaAZHwC0jPKMefZpoB00gAWgIR0Cd6V/UONHZdX2UKGgGR0BvSEurZJ05aAdNgwFoCEdAneyreEZiu3V9lChoBkdAbUBlnRLK3mgHTZUBaAhHQJ3wW46Oo5x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |