|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch YaLM model.""" |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import (add_start_docstrings, |
|
add_start_docstrings_to_model_forward, logging, |
|
replace_return_docstrings) |
|
|
|
from configuration_yalm import YalmConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "YalmConfig" |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat( |
|
[ |
|
torch.zeros( |
|
tgt_len, past_key_values_length, dtype=dtype, device=device |
|
), |
|
mask, |
|
], |
|
dim=-1, |
|
) |
|
return mask[None, None, :, :].expand( |
|
bsz, 1, tgt_len, tgt_len + past_key_values_length |
|
) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min |
|
) |
|
|
|
|
|
class YalmRotaryPositionEncoding(nn.Module): |
|
def __init__(self, max_seq_length: int, hidden_size_per_attention_head: int, dtype): |
|
super().__init__() |
|
cos_cached, sin_cached = YalmRotaryPositionEncoding.get_cache_multipliers( |
|
max_seq_length, hidden_size_per_attention_head, dtype |
|
) |
|
self.register_buffer( |
|
"cos_cached", cos_cached.unsqueeze(1).unsqueeze(2), persistent=False |
|
) |
|
self.register_buffer( |
|
"sin_cached", sin_cached.unsqueeze(1).unsqueeze(2), persistent=False |
|
) |
|
|
|
def forward(self, hidden_state, context_position): |
|
seq_length = hidden_state.shape[0] |
|
cache_slice = slice(context_position, context_position + seq_length) |
|
return self.apply_rotary_position_encoding( |
|
hidden_state, self.cos_cached[cache_slice], self.sin_cached[cache_slice] |
|
) |
|
|
|
@staticmethod |
|
def get_cache_multipliers(max_seq_length, hidden_size, dtype): |
|
inv_freqs = 1e-4 ** ( |
|
torch.arange(0, hidden_size, 2, dtype=torch.float) / hidden_size |
|
) |
|
positions = torch.arange(max_seq_length, dtype=torch.float) |
|
angles = positions.unsqueeze(-1) * inv_freqs |
|
|
|
return torch.cos(angles).to(dtype), torch.sin(angles).to(dtype) |
|
|
|
@staticmethod |
|
def apply_rotary_position_encoding(hidden_state, cos_cached, sin_cached): |
|
sq, b, np, hn = hidden_state.shape |
|
half_hn = hn // 2 |
|
left, right = hidden_state[..., :half_hn], hidden_state[..., half_hn:] |
|
encoded_left = cos_cached * left - sin_cached * right |
|
encoded_right = sin_cached * left + cos_cached * right |
|
return torch.cat((encoded_left, encoded_right), dim=3) |
|
|
|
|
|
class YalmSelfAttention(nn.Module): |
|
"""Parallel self-attention layer abstract class. |
|
|
|
Self-attention layer takes input with size [b, s, h] |
|
and returns output of the same size. |
|
""" |
|
|
|
def __init__(self, config: YalmConfig, layer_idx: int): |
|
super().__init__() |
|
|
|
self.attention_mask_func = None |
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx |
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.hidden_size_per_partition = config.hidden_size |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size_per_attention_head = ( |
|
config.hidden_size // config.num_attention_heads |
|
) |
|
|
|
if ( |
|
self.hidden_size_per_attention_head * self.num_attention_heads |
|
) != self.hidden_size_per_partition: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size) |
|
|
|
self.coeff = None |
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) |
|
if self.scale_attn_by_inverse_layer_idx: |
|
self.coeff = self.layer_idx + 1 |
|
self.norm_factor *= self.coeff |
|
|
|
|
|
|
|
|
|
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) |
|
|
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
self.rotary_position_encoding = YalmRotaryPositionEncoding( |
|
config.max_position_embeddings, |
|
self.hidden_size_per_attention_head, |
|
dtype=self.dense.weight.dtype, |
|
) |
|
|
|
def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first): |
|
input_shape = mixed_layer.size() |
|
if num_splits_first: |
|
"""[s, b, num_splits * np * hn] |
|
-->(view) [s, b, num_splits, np, hn] |
|
-->(tranpose) [s, b, np, num_splits, hn] |
|
-->(view) [s, b, np * num_splits * hn]""" |
|
|
|
intermediate_shape = input_shape[:-1] + ( |
|
num_splits, |
|
self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
|
|
mixed_layer = mixed_layer.view(*intermediate_shape) |
|
mixed_layer = mixed_layer.transpose(-2, -3).contiguous() |
|
else: |
|
"""[s, b, np * hn * num_splits] |
|
-->(view) [s, b, np, hn, num_splits] |
|
-->(tranpose) [s, b, np, num_splits, hn] |
|
-->(view) [s, b, np * num_splits * hn]""" |
|
|
|
intermediate_shape = input_shape[:-1] + ( |
|
self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head, |
|
num_splits, |
|
) |
|
|
|
mixed_layer = mixed_layer.view(*intermediate_shape) |
|
mixed_layer = mixed_layer.transpose(-1, -2).contiguous() |
|
mixed_layer = mixed_layer.view(*input_shape) |
|
|
|
return mixed_layer |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: torch.FloatTensor, |
|
layer_past: Optional[Tuple[torch.Tensor, int]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
|
|
|
|
new_tensor_shape = mixed_x_layer.size()[:-1] + ( |
|
self.num_attention_heads_per_partition, |
|
3 * self.hidden_size_per_attention_head, |
|
) |
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) |
|
|
|
|
|
(query_layer, key_layer, value_layer) = torch.split( |
|
mixed_x_layer, self.hidden_size_per_attention_head, dim=-1 |
|
) |
|
|
|
context_position = 0 if layer_past is None else layer_past[2] |
|
query_layer = self.rotary_position_encoding(query_layer, context_position) |
|
key_layer = self.rotary_position_encoding(key_layer, context_position) |
|
|
|
|
|
|
|
|
|
|
|
if layer_past is not None: |
|
past_key, past_value, sq_length = layer_past |
|
key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=0) |
|
value_layer = torch.cat( |
|
(past_value.type_as(value_layer), value_layer), dim=0 |
|
) |
|
sq_length += 1 |
|
else: |
|
sq_length = key_layer.size()[0] |
|
|
|
present = (key_layer, value_layer, sq_length) if use_cache else None |
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = ( |
|
query_layer.size(1), |
|
query_layer.size(2), |
|
query_layer.size(0), |
|
key_layer.size(0), |
|
) |
|
|
|
|
|
query_layer = query_layer.view( |
|
output_size[2], output_size[0] * output_size[1], -1 |
|
) |
|
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) |
|
|
|
|
|
matmul_result = torch.empty( |
|
output_size[0] * output_size[1], |
|
output_size[2], |
|
output_size[3], |
|
dtype=query_layer.dtype, |
|
device=query_layer.device, |
|
) |
|
|
|
|
|
matmul_result = torch.baddbmm( |
|
matmul_result, |
|
query_layer.transpose(0, 1), |
|
key_layer.transpose(0, 1).transpose(1, 2), |
|
beta=0.0, |
|
alpha=(1.0 / self.norm_factor), |
|
) |
|
|
|
|
|
attention_scores = matmul_result.view(*output_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.coeff is not None: |
|
attention_scores = attention_scores * self.coeff |
|
if attention_mask is not None: |
|
attention_scores += attention_mask |
|
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores) |
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = ( |
|
value_layer.size(1), |
|
value_layer.size(2), |
|
query_layer.size(0), |
|
value_layer.size(3), |
|
) |
|
|
|
|
|
value_layer = value_layer.view( |
|
value_layer.size(0), output_size[0] * output_size[1], -1 |
|
) |
|
|
|
|
|
attention_probs = attention_probs.view( |
|
output_size[0] * output_size[1], output_size[2], -1 |
|
) |
|
|
|
|
|
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) |
|
|
|
|
|
context_layer = context_layer.view(*output_size) |
|
|
|
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() |
|
|
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + ( |
|
self.hidden_size_per_partition, |
|
) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
|
|
|
|
|
|
|
|
output = self.dense(context_layer) |
|
output = (output, present) |
|
if output_attentions: |
|
outputs += (attention_probs,) |
|
|
|
return output |
|
|
|
|
|
class YalmMLP(nn.Module): |
|
"""MLP. |
|
|
|
MLP will take the input with h hidden state, project it to 4*h |
|
hidden dimension, perform nonlinear transformation, and project the |
|
state back into h hidden dimension. At the end, dropout is also |
|
applied. |
|
""" |
|
|
|
def __init__(self, config: YalmConfig): |
|
super().__init__() |
|
|
|
self.dense_ffn_hidden = nn.Linear( |
|
config.hidden_size, |
|
config.intermediate_size, |
|
) |
|
|
|
self.activation_type = config.activation_type |
|
self.is_gated = config.activation_type in ["geglu"] |
|
|
|
self.activation_func = torch.nn.functional.gelu |
|
|
|
if self.is_gated: |
|
self.dense_ffn_gate = nn.Linear( |
|
config.hidden_size, |
|
config.intermediate_size, |
|
) |
|
|
|
self.dense_ffn_output = nn.Linear( |
|
config.intermediate_size, |
|
config.hidden_size, |
|
) |
|
|
|
def forward(self, hidden_states): |
|
intermediate_parallel = self.dense_ffn_hidden(hidden_states) |
|
|
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
|
|
if self.is_gated: |
|
gate = self.dense_ffn_gate(hidden_states) |
|
intermediate_gated = intermediate_parallel * gate |
|
else: |
|
intermediate_gated = intermediate_parallel |
|
|
|
output = self.dense_ffn_output(intermediate_gated) |
|
return output |
|
|
|
|
|
class YalmTransformerLayer(nn.Module): |
|
"""A single transformer layer. |
|
|
|
Transformore layer takes input with size [b, s, h] and returns an |
|
output of the same size. |
|
""" |
|
|
|
def __init__(self, config: YalmConfig, layer_idx: int): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
|
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm |
|
) |
|
|
|
|
|
if self.layer_idx > 0: |
|
self.input_layernorm = nn.LayerNorm( |
|
config.hidden_size, |
|
eps=config.layernorm_epsilon, |
|
) |
|
|
|
|
|
self.attention = YalmSelfAttention(config, layer_idx) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
|
|
self.post_attention_layernorm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layernorm_epsilon |
|
) |
|
|
|
|
|
self.mlp = YalmMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, int]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
|
|
|
|
|
|
if self.layer_idx > 0: |
|
attention_input = self.input_layernorm(hidden_states) |
|
else: |
|
attention_input = hidden_states |
|
|
|
|
|
attention_layer_outputs = self.attention( |
|
attention_input, |
|
attention_mask, |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = attention_layer_outputs[ |
|
0 |
|
] |
|
outputs = attention_layer_outputs[1:] |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = attention_input |
|
else: |
|
residual = hidden_states |
|
|
|
attention_output = torch.nn.functional.dropout( |
|
attention_output, p=self.hidden_dropout, training=self.training |
|
) |
|
layernorm_input = attention_output + residual |
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
residual = layernorm_input |
|
|
|
mlp_output = torch.nn.functional.dropout( |
|
mlp_output, p=self.hidden_dropout, training=self.training |
|
) |
|
output = mlp_output + residual |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class YalmTransformer(nn.Module): |
|
"""Transformer class.""" |
|
|
|
def __init__(self, config: YalmConfig): |
|
super().__init__() |
|
|
|
|
|
self.num_layers = config.num_layers |
|
|
|
self.layers = torch.nn.ModuleList( |
|
[YalmTransformerLayer(config, layer_idx=i) for i in range(self.num_layers)] |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, int]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
gradient_checkpointing: bool = False, |
|
): |
|
|
|
hidden_states = hidden_states.transpose(0, 1).contiguous() |
|
|
|
presents = () if use_cache else None |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, None, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
outputs = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
if output_attentions: |
|
all_attentions = all_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
output = hidden_states.transpose(0, 1).contiguous() |
|
|
|
return output, presents, all_hidden_states, all_attentions |
|
|
|
|
|
class YalmProjector(nn.Module): |
|
def __init__(self, config: YalmConfig, dtype, device): |
|
super().__init__() |
|
|
|
self.embedding_size = config.embedding_size |
|
self.hidden_size = config.hidden_size |
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm |
|
) |
|
|
|
if not self.apply_residual_connection_post_layernorm: |
|
self.input_layernorm = nn.LayerNorm( |
|
config.embedding_size, eps=config.layernorm_epsilon |
|
) |
|
|
|
if config.embedding_size != config.hidden_size: |
|
self.register_buffer( |
|
"projector", |
|
torch.eye( |
|
config.embedding_size, |
|
config.hidden_size, |
|
), |
|
persistent=False, |
|
) |
|
|
|
def forward(self, data): |
|
if self.apply_residual_connection_post_layernorm: |
|
hidden_states = data |
|
else: |
|
hidden_states = self.input_layernorm(data) |
|
|
|
if self.embedding_size != self.hidden_size: |
|
hidden_states = hidden_states @ self.projector |
|
|
|
return hidden_states |
|
|
|
|
|
class YalmOutputLayer(nn.Module): |
|
def __init__(self, config: YalmConfig) -> None: |
|
super().__init__() |
|
self.input_layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layernorm_epsilon |
|
) |
|
|
|
self.dense = nn.Linear( |
|
config.hidden_size, |
|
config.embedding_size, |
|
) |
|
|
|
self.activation = torch.nn.functional.gelu |
|
|
|
self.output_layer_norm = nn.LayerNorm( |
|
config.embedding_size, |
|
eps=config.layernorm_epsilon, |
|
) |
|
|
|
def forward(self, input_data): |
|
output = self.input_layer_norm(input_data) |
|
output = self.dense(output) |
|
output = self.activation(output) |
|
output = self.output_layer_norm(output) |
|
return output |
|
|
|
|
|
YALM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`YalmConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Yalm Model outputting raw hidden-states without any specific head on top.", |
|
YALM_START_DOCSTRING, |
|
) |
|
class YalmPreTrainedModel(PreTrainedModel): |
|
config_class = YalmConfig |
|
base_model_prefix = "yalm" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["YalmTransformerLayer"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, YalmModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
YALM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare YaLM Model outputting raw hidden-states without any specific head on top.", |
|
YALM_START_DOCSTRING, |
|
) |
|
class YalmModel(YalmPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`YalmDecoderLayer`] |
|
|
|
Args: |
|
config: YalmConfig |
|
""" |
|
|
|
def __init__(self, config: YalmConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.padded_vocab_size = config.padded_vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.padded_vocab_size, config.embedding_size, self.padding_idx |
|
) |
|
self.projector = YalmProjector( |
|
config, self.embed_tokens.weight.dtype, self.embed_tokens.weight.device |
|
) |
|
self.transformer = YalmTransformer(config) |
|
self.output_layer = YalmOutputLayer(config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def _prepare_decoder_attention_mask( |
|
self, attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask( |
|
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
).to(inputs_embeds.device) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(YALM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
else: |
|
past_key_values = tuple(None for _ in range(self.config.num_layers)) |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), |
|
dtype=torch.bool, |
|
device=inputs_embeds.device, |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
hidden_states = self.projector(inputs_embeds) |
|
|
|
hidden_states, presents, all_hidden_states, all_attentions = self.transformer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
gradient_checkpointing=self.gradient_checkpointing, |
|
) |
|
last_hidden_states = self.output_layer(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (last_hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
last_hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=last_hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
YaLM Model with a `language modeling` head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
YALM_START_DOCSTRING, |
|
) |
|
class YalmForCausalLM(YalmPreTrainedModel): |
|
_tied_weights_keys = [r"yalm.embed_tokens.weight", r"lm_head.weight"] |
|
|
|
def __init__(self, config: YalmConfig): |
|
super().__init__(config) |
|
|
|
self.yalm = YalmModel(config) |
|
self.lm_head = nn.Linear( |
|
config.embedding_size, config.padded_vocab_size, bias=False |
|
) |
|
self.out_bias = torch.nn.Parameter( |
|
torch.zeros( |
|
config.padded_vocab_size, |
|
) |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward( |
|
YALM_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@replace_return_docstrings( |
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are |
|
only required when the model is used as a decoder in a Sequence to Sequence model. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, YalmForCausalLM, YalmConfig |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("TODO") |
|
>>> config = YalmConfig.from_pretrained("TODO") |
|
>>> config.is_decoder = True |
|
>>> model = YalmForCausalLM.from_pretrained("TODO", config=config) |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.logits |
|
```""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.yalm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.lm_head(hidden_states) + self.out_bias |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=lm_loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, **kwargs |
|
): |
|
input_shape = input_ids.shape |
|
|
|
|
|
if past_key_values and past_key_values[0] is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"past_key_values": past_key_values, |
|
} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple( |
|
past_state.index_select(0, beam_idx) |
|
for past_state in layer_past[:2] |
|
) |
|
+ layer_past[2:], |
|
) |
|
return reordered_past |
|
|