--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - vitext2sql metrics: - bleu model-index: - name: TrainedModels results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: vitext2sql type: vitext2sql config: vitext2sql_source split: test args: vitext2sql_source metrics: - name: Bleu type: bleu value: 5.1741 --- # TrainedModels This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the vitext2sql dataset. It achieves the following results on the evaluation set: - Loss: 0.7564 - Bleu: 5.1741 - Gen Len: 18.1829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.9517 | 1.0 | 6831 | 0.8409 | 3.1104 | 16.164 | | 0.7029 | 2.0 | 13662 | 0.7696 | 4.9487 | 18.153 | | 0.6078 | 3.0 | 20493 | 0.7564 | 5.1741 | 18.1829 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1