--- license: other base_model: apple/mobilevit-xx-small tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-plankton results: - task: name: Image Classification type: image-classification dataset: name: plankton_fairscope type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8050847457627118 --- # vit-base-plankton This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co./apple/mobilevit-xx-small) on the plankton_fairscope dataset. It achieves the following results on the evaluation set: - Loss: 0.7642 - Accuracy: 0.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5476 | 0.52 | 100 | 1.2745 | 0.7419 | | 1.0997 | 1.04 | 200 | 0.8653 | 0.7842 | | 0.9498 | 1.56 | 300 | 0.7642 | 0.8051 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0