File size: 1,809 Bytes
58e31c0
dcf30c5
 
58e31c0
 
 
 
dcf30c5
 
58e31c0
 
dcf30c5
 
 
 
 
 
 
 
 
 
 
 
 
 
58e31c0
 
 
 
 
 
 
dcf30c5
 
 
 
58e31c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf30c5
 
 
 
 
 
 
 
 
58e31c0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-plankton
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8050847457627118
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-plankton

This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co./apple/mobilevit-xx-small) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7642
- Accuracy: 0.8051

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5476        | 0.52  | 100  | 1.2745          | 0.7419   |
| 1.0997        | 1.04  | 200  | 0.8653          | 0.7842   |
| 0.9498        | 1.56  | 300  | 0.7642          | 0.8051   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0