Bingsu commited on
Commit
223329b
β€’
1 Parent(s): c7b9c43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -1
README.md CHANGED
@@ -13,4 +13,168 @@ tags:
13
 
14
  # EXAONE-3.0-8B-it
15
 
16
- λ™μž‘ν•˜λŠ”μ§€ 확인 λͺ»ν•΄λ΄„
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  # EXAONE-3.0-8B-it
15
 
16
+ ```py
17
+ from llama_cpp import Llama
18
+
19
+ llm = Llama.from_pretrained(
20
+ repo_id="Bingsu/exaone-3.0-7.8b-it",
21
+ filename="exaone-3.0-7.8B-it-Q8_0.gguf"
22
+ )
23
+ ```
24
+
25
+ ```sh
26
+ llama_model_loader: loaded meta data with 34 key-value pairs and 291 tensors from /root/.cache/huggingface/hub/models--Bingsu--exaone-3.0-7.8b-it/snapshots/c7b9c43a7d1db6509b40e9b18f10ae0554b3d4cb/./exaone-3.0-7.8B-it-Q8_0.gguf (version GGUF V3 (latest))
27
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
28
+ llama_model_loader: - kv 0: general.architecture str = llama
29
+ llama_model_loader: - kv 1: general.type str = model
30
+ llama_model_loader: - kv 2: general.name str = Exaone 3.0 7.8b It
31
+ llama_model_loader: - kv 3: general.finetune str = it
32
+ llama_model_loader: - kv 4: general.basename str = exaone-3.0
33
+ llama_model_loader: - kv 5: general.size_label str = 7.8B
34
+ llama_model_loader: - kv 6: general.license str = other
35
+ llama_model_loader: - kv 7: general.license.name str = exaone
36
+ llama_model_loader: - kv 8: general.license.link str = LICENSE
37
+ llama_model_loader: - kv 9: general.tags arr[str,2] = ["lg-ai", "exaone"]
38
+ llama_model_loader: - kv 10: general.languages arr[str,2] = ["en", "ko"]
39
+ llama_model_loader: - kv 11: llama.block_count u32 = 32
40
+ llama_model_loader: - kv 12: llama.context_length u32 = 4096
41
+ llama_model_loader: - kv 13: llama.embedding_length u32 = 4096
42
+ llama_model_loader: - kv 14: llama.feed_forward_length u32 = 14336
43
+ llama_model_loader: - kv 15: llama.attention.head_count u32 = 32
44
+ llama_model_loader: - kv 16: llama.attention.head_count_kv u32 = 8
45
+ llama_model_loader: - kv 17: llama.rope.freq_base f32 = 500000.000000
46
+ llama_model_loader: - kv 18: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
47
+ llama_model_loader: - kv 19: general.file_type u32 = 7
48
+ llama_model_loader: - kv 20: llama.vocab_size u32 = 102400
49
+ llama_model_loader: - kv 21: llama.rope.dimension_count u32 = 128
50
+ llama_model_loader: - kv 22: tokenizer.ggml.add_space_prefix bool = false
51
+ llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
52
+ llama_model_loader: - kv 24: tokenizer.ggml.pre str = default
53
+ llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,102400] = ["[PAD]", "[BOS]", "[EOS]", "[UNK]", ...
54
+ llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,102400] = [3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, ...
55
+ llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,101782] = ["t h", "Δ  a", "Δ  Γ­", "i n", "Δ  t...
56
+ llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 1
57
+ llama_model_loader: - kv 29: tokenizer.ggml.eos_token_id u32 = 361
58
+ llama_model_loader: - kv 30: tokenizer.ggml.unknown_token_id u32 = 3
59
+ llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 0
60
+ llama_model_loader: - kv 32: tokenizer.chat_template str = {% for message in messages %}{% if lo...
61
+ llama_model_loader: - kv 33: general.quantization_version u32 = 2
62
+ llama_model_loader: - type f32: 65 tensors
63
+ llama_model_loader: - type q8_0: 226 tensors
64
+ llm_load_vocab: special tokens cache size = 362
65
+ llm_load_vocab: token to piece cache size = 0.6622 MB
66
+ llm_load_print_meta: format = GGUF V3 (latest)
67
+ llm_load_print_meta: arch = llama
68
+ llm_load_print_meta: vocab type = BPE
69
+ llm_load_print_meta: n_vocab = 102400
70
+ llm_load_print_meta: n_merges = 101782
71
+ llm_load_print_meta: vocab_only = 0
72
+ llm_load_print_meta: n_ctx_train = 4096
73
+ llm_load_print_meta: n_embd = 4096
74
+ llm_load_print_meta: n_layer = 32
75
+ llm_load_print_meta: n_head = 32
76
+ llm_load_print_meta: n_head_kv = 8
77
+ llm_load_print_meta: n_rot = 128
78
+ llm_load_print_meta: n_swa = 0
79
+ llm_load_print_meta: n_embd_head_k = 128
80
+ llm_load_print_meta: n_embd_head_v = 128
81
+ llm_load_print_meta: n_gqa = 4
82
+ llm_load_print_meta: n_embd_k_gqa = 1024
83
+ llm_load_print_meta: n_embd_v_gqa = 1024
84
+ llm_load_print_meta: f_norm_eps = 0.0e+00
85
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
86
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
87
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
88
+ llm_load_print_meta: f_logit_scale = 0.0e+00
89
+ llm_load_print_meta: n_ff = 14336
90
+ llm_load_print_meta: n_expert = 0
91
+ llm_load_print_meta: n_expert_used = 0
92
+ llm_load_print_meta: causal attn = 1
93
+ llm_load_print_meta: pooling type = 0
94
+ llm_load_print_meta: rope type = 0
95
+ llm_load_print_meta: rope scaling = linear
96
+ llm_load_print_meta: freq_base_train = 500000.0
97
+ llm_load_print_meta: freq_scale_train = 1
98
+ llm_load_print_meta: n_ctx_orig_yarn = 4096
99
+ llm_load_print_meta: rope_finetuned = unknown
100
+ llm_load_print_meta: ssm_d_conv = 0
101
+ llm_load_print_meta: ssm_d_inner = 0
102
+ llm_load_print_meta: ssm_d_state = 0
103
+ llm_load_print_meta: ssm_dt_rank = 0
104
+ llm_load_print_meta: model type = 8B
105
+ llm_load_print_meta: model ftype = Q8_0
106
+ llm_load_print_meta: model params = 7.82 B
107
+ llm_load_print_meta: model size = 7.74 GiB (8.50 BPW)
108
+ llm_load_print_meta: general.name = Exaone 3.0 7.8b It
109
+ llm_load_print_meta: BOS token = 1 '[BOS]'
110
+ llm_load_print_meta: EOS token = 361 '[|endofturn|]'
111
+ llm_load_print_meta: UNK token = 3 '[UNK]'
112
+ llm_load_print_meta: PAD token = 0 '[PAD]'
113
+ llm_load_print_meta: LF token = 490 'Γ„'
114
+ llm_load_print_meta: EOT token = 42 '<|endoftext|>'
115
+ llm_load_print_meta: max token length = 48
116
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: yes
117
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
118
+ ggml_cuda_init: found 1 CUDA devices:
119
+ Device 0: NVIDIA L4, compute capability 8.9, VMM: yes
120
+ llm_load_tensors: ggml ctx size = 0.14 MiB
121
+ llm_load_tensors: offloading 0 repeating layers to GPU
122
+ llm_load_tensors: offloaded 0/33 layers to GPU
123
+ llm_load_tensors: CPU buffer size = 7923.02 MiB
124
+ ............................................................................................
125
+ llama_new_context_with_model: n_ctx = 512
126
+ llama_new_context_with_model: n_batch = 512
127
+ llama_new_context_with_model: n_ubatch = 512
128
+ llama_new_context_with_model: flash_attn = 0
129
+ llama_new_context_with_model: freq_base = 500000.0
130
+ llama_new_context_with_model: freq_scale = 1
131
+ llama_kv_cache_init: CUDA_Host KV buffer size = 64.00 MiB
132
+ llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
133
+ llama_new_context_with_model: CUDA_Host output buffer size = 0.39 MiB
134
+ llama_new_context_with_model: CUDA0 compute buffer size = 633.00 MiB
135
+ llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
136
+ llama_new_context_with_model: graph nodes = 1030
137
+ llama_new_context_with_model: graph splits = 356
138
+ AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
139
+ Model metadata: {'tokenizer.ggml.unknown_token_id': '3', 'tokenizer.ggml.eos_token_id': '361', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'tokenizer.ggml.add_space_prefix': 'false', 'llama.rope.dimension_count': '128', 'llama.vocab_size': '102400', 'general.file_type': '7', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.freq_base': '500000.000000', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'general.architecture': 'llama', 'llama.attention.head_count_kv': '8', 'llama.block_count': '32', 'tokenizer.ggml.padding_token_id': '0', 'general.basename': 'exaone-3.0', 'tokenizer.ggml.pre': 'default', 'llama.context_length': '4096', 'general.name': 'Exaone 3.0 7.8b It', 'general.type': 'model', 'general.size_label': '7.8B', 'general.finetune': 'it', 'general.license.name': 'exaone', 'tokenizer.chat_template': "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]\n' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '\n' }}{% else %}{{ '[|endofturn|]\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}", 'general.license.link': 'LICENSE', 'general.license': 'other', 'llama.feed_forward_length': '14336', 'llama.embedding_length': '4096'}
140
+ Available chat formats from metadata: chat_template.default
141
+ Using gguf chat template: {% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]
142
+ ' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '
143
+ ' }}{% else %}{{ '[|endofturn|]
144
+ ' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}
145
+ Using chat eos_token: [|endofturn|]
146
+ Using chat bos_token: [BOS]
147
+ ```
148
+
149
+ ```py
150
+ llm.create_chat_completion(
151
+ messages = [
152
+ {
153
+ "role": "system",
154
+ "content": "You are EXAONE model from LG AI Research, a helpful assistant."
155
+ },
156
+ {
157
+ "role": "user",
158
+ "content": "λ‹€ ν•΄μ€¬μž–μ•„"
159
+ }
160
+ ]
161
+ )
162
+ ```
163
+
164
+ ```sh
165
+ llama_print_timings: load time = 1812.86 ms
166
+ llama_print_timings: sample time = 20.39 ms / 220 runs ( 0.09 ms per token, 10788.54 tokens per second)
167
+ llama_print_timings: prompt eval time = 1812.72 ms / 38 tokens ( 47.70 ms per token, 20.96 tokens per second)
168
+ llama_print_timings: eval time = 33280.46 ms / 219 runs ( 151.97 ms per token, 6.58 tokens per second)
169
+ llama_print_timings: total time = 35397.95 ms / 257 tokens
170
+ {'id': 'chatcmpl-451b0538-c70d-45f4-924b-106f5ac3c02f',
171
+ 'object': 'chat.completion',
172
+ 'created': 1723204952,
173
+ 'model': '/root/.cache/huggingface/hub/models--Bingsu--exaone-3.0-7.8b-it/snapshots/c7b9c43a7d1db6509b40e9b18f10ae0554b3d4cb/./exaone-3.0-7.8B-it-Q8_0.gguf',
174
+ 'choices': [{'index': 0,
175
+ 'message': {'role': 'assistant',
176
+ 'content': 'λ„€, μ•Œκ² μŠ΅λ‹ˆλ‹€. 이전에 λ§μ”€ν•˜μ‹  λ‚΄μš©μ„ μš”μ•½ν•΄ λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€:\n\n1. EXAONE 2.0 λͺ¨λΈμ˜ νŠΉμ§•:\n - 7.8B instruction νŠœλ‹ νŒŒλΌλ―Έν„°\n - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n2. 연ꡬ λ…Όλ¬Έ:\n - "EXAONE 2.0: An Open-Retrieval Large Language Model for Dense Retrieval and Question Answering"\n\n3. μ£Όμš” μ„±κ³Ό:\n - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n4. ν™œμš© 사둀:\n - 고객 지원 챗봇\n - 법λ₯  λ¬Έμ„œ μš”μ•½\n - 의료 정보 제곡\n\n5. 기술적 μ„ΈλΆ€ 사항:\n - 7.8B instruction νŠœλ‹ νŒŒλΌλ―Έν„°\n - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n이 외에 μΆ”κ°€λ‘œ κΆκΈˆν•œ 사항이 μžˆμœΌμ‹œλ©΄ μ–Έμ œλ“ μ§€ 말씀해 μ£Όμ„Έμš”!'},
177
+ 'logprobs': None,
178
+ 'finish_reason': 'stop'}],
179
+ 'usage': {'prompt_tokens': 38, 'completion_tokens': 219, 'total_tokens': 257}}
180
+ ```