--- language: - en - ar metrics: - accuracy pipeline_tag: text-generation tags: - medical license: cc-by-nc-sa-4.0 --- ## Model Card for BiMediX-Bilingual ### Model Details - **Name:** BiMediX - **Version:** 1.0 - **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM) - **Languages:** English, Arabic - **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) - **Training Data:** BiMed1.3M, a bilingual dataset with diverse medical interactions. ### Intended Use - **Primary Use:** Medical interactions in both English and Arabic. - **Capabilities:** MCQA, closed QA and chats. ## Getting Started ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "BiMediX/BiMediX-Bi" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello BiMediX! I've been experiencing increased tiredness in the past week." inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=500) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Training Procedure - **Dataset:** BiMed1.3M, 632 million healthcare specialized tokens. - **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters. - **Training Resources:** The model underwent training on approximately 632 million tokens from the Arabic-English corpus, including 288 million tokens exclusively for English. ### Model Performance - **Benchmarks:** Outperforms the baseline model and Jais-30B in medical evaluations. | **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** | |-----------------------------------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------| | Jais-30B | 57.4 | 55.2 | 46.2 | 55.0 | 46.0 | 48.9 | 40.2 | 31.0 | 75.5 | 50.6 | | Mixtral-8x7B| 59.1 | 57.6 | 52.6 | 59.5 | 53.3 | 54.4 | 43.2 | 40.6 | 74.7 | 55.0 | | **BiMediX (Bilingual)** | **70.6** | **72.2** | **59.3** | **74.0** | **64.2** | **59.6**| **55.8** | **54.0** | **78.6** | **65.4**| ### Limitations - Potential issues: hallucinations, toxicity, stereotypes. - Medical diagnoses and recommendations require human evaluation. ### Safety and Ethical Considerations - **Usage:** Research purposes only. ### Accessibility - **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX). ### Authors Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**