Benjamin-png commited on
Commit
0f534c0
1 Parent(s): b707591

Upload 9 files

Browse files
README.md CHANGED
@@ -1,3 +1,99 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-nc-4.0
4
+ tags:
5
+ - mms
6
+ - vits
7
+ pipeline_tag: text-to-speech
8
+ ---
9
+
10
+ # Massively Multilingual Speech (MMS): Swahili Text-to-Speech
11
+
12
+ This repository contains the **Swahili (swh)** language text-to-speech (TTS) model checkpoint.
13
+
14
+ This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to
15
+ provide speech technology across a diverse range of languages. You can find more details about the supported languages
16
+ and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
17
+ and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
18
+
19
+ MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards.
20
+
21
+ ## Model Details
22
+
23
+ VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end
24
+ speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational
25
+ autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior.
26
+
27
+ A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based
28
+ text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers,
29
+ much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text
30
+ input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to
31
+ synthesise speech with different rhythms from the same input text.
32
+
33
+ The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training.
34
+ To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During
35
+ inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the
36
+ waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor,
37
+ the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform.
38
+
39
+ For the MMS project, a separate VITS checkpoint is trained on each langauge.
40
+
41
+ ## Usage
42
+
43
+ MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint,
44
+ first install the latest version of the library:
45
+
46
+ ```
47
+ pip install --upgrade transformers accelerate
48
+ ```
49
+
50
+ Then, run inference with the following code-snippet:
51
+
52
+ ```python
53
+ from transformers import VitsModel, AutoTokenizer
54
+ import torch
55
+
56
+ model = VitsModel.from_pretrained("facebook/mms-tts-swh")
57
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-swh")
58
+
59
+ text = "some example text in the Swahili language"
60
+ inputs = tokenizer(text, return_tensors="pt")
61
+
62
+ with torch.no_grad():
63
+ output = model(**inputs).waveform
64
+ ```
65
+
66
+ The resulting waveform can be saved as a `.wav` file:
67
+
68
+ ```python
69
+ import scipy
70
+
71
+ scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output)
72
+ ```
73
+
74
+ Or displayed in a Jupyter Notebook / Google Colab:
75
+
76
+ ```python
77
+ from IPython.display import Audio
78
+
79
+ Audio(output, rate=model.config.sampling_rate)
80
+ ```
81
+
82
+
83
+
84
+ ## BibTex citation
85
+
86
+ This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper:
87
+
88
+ ```
89
+ @article{pratap2023mms,
90
+ title={Scaling Speech Technology to 1,000+ Languages},
91
+ author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
92
+ journal={arXiv},
93
+ year={2023}
94
+ }
95
+ ```
96
+
97
+ ## License
98
+
99
+ The model is licensed as **CC-BY-NC 4.0**.
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.1,
3
+ "architectures": [
4
+ "VitsModel"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "depth_separable_channels": 2,
8
+ "depth_separable_num_layers": 3,
9
+ "duration_predictor_dropout": 0.5,
10
+ "duration_predictor_filter_channels": 256,
11
+ "duration_predictor_flow_bins": 10,
12
+ "duration_predictor_kernel_size": 3,
13
+ "duration_predictor_num_flows": 4,
14
+ "duration_predictor_tail_bound": 5.0,
15
+ "ffn_dim": 768,
16
+ "ffn_kernel_size": 3,
17
+ "flow_size": 192,
18
+ "hidden_act": "relu",
19
+ "hidden_dropout": 0.1,
20
+ "hidden_size": 192,
21
+ "initializer_range": 0.02,
22
+ "layer_norm_eps": 1e-05,
23
+ "layerdrop": 0.1,
24
+ "leaky_relu_slope": 0.1,
25
+ "model_type": "vits",
26
+ "noise_scale": 0.667,
27
+ "noise_scale_duration": 0.8,
28
+ "num_attention_heads": 2,
29
+ "num_hidden_layers": 6,
30
+ "num_speakers": 1,
31
+ "posterior_encoder_num_wavenet_layers": 16,
32
+ "prior_encoder_num_flows": 4,
33
+ "prior_encoder_num_wavenet_layers": 4,
34
+ "resblock_dilation_sizes": [
35
+ [
36
+ 1,
37
+ 3,
38
+ 5
39
+ ],
40
+ [
41
+ 1,
42
+ 3,
43
+ 5
44
+ ],
45
+ [
46
+ 1,
47
+ 3,
48
+ 5
49
+ ]
50
+ ],
51
+ "resblock_kernel_sizes": [
52
+ 3,
53
+ 7,
54
+ 11
55
+ ],
56
+ "sampling_rate": 16000,
57
+ "speaker_embedding_size": 0,
58
+ "speaking_rate": 1.0,
59
+ "spectrogram_bins": 513,
60
+ "torch_dtype": "float32",
61
+ "transformers_version": "4.33.0.dev0",
62
+ "upsample_initial_channel": 512,
63
+ "upsample_kernel_sizes": [
64
+ 16,
65
+ 16,
66
+ 4,
67
+ 4
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2
74
+ ],
75
+ "use_bias": true,
76
+ "use_stochastic_duration_prediction": true,
77
+ "vocab_size": 39,
78
+ "wavenet_dilation_rate": 1,
79
+ "wavenet_dropout": 0.0,
80
+ "wavenet_kernel_size": 5,
81
+ "window_size": 4
82
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c830aa67ab9199c036e92274ce6b3a31ddf1fa9434b66b70dd485f81b87dc2f8
3
+ size 145228280
preprocessor_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "feature_extractor_type": "VitsFeatureExtractor",
3
+ "feature_size": 80,
4
+ "hop_length": 256,
5
+ "max_wav_value": 32768.0,
6
+ "n_fft": 1024,
7
+ "padding_side": "right",
8
+ "padding_value": 0.0,
9
+ "return_attention_mask": false,
10
+ "sampling_rate": 16000
11
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cbdf4e40ad12e6801391272b043f30907026891302e5dca4638da1edd14b36e
3
+ size 145389490
special_tokens_map.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "pad_token": "2",
3
+ "unk_token": "<unk>"
4
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_blank": true,
3
+ "clean_up_tokenization_spaces": true,
4
+ "is_uroman": false,
5
+ "language": "swh",
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "normalize": true,
8
+ "pad_token": "2",
9
+ "phonemize": false,
10
+ "tokenizer_class": "VitsTokenizer",
11
+ "unk_token": "<unk>"
12
+ }
vocab.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ " ": 34,
3
+ "'": 36,
4
+ "-": 9,
5
+ "0": 13,
6
+ "1": 23,
7
+ "2": 0,
8
+ "3": 24,
9
+ "4": 18,
10
+ "5": 31,
11
+ "6": 27,
12
+ "7": 17,
13
+ "8": 7,
14
+ "_": 38,
15
+ "a": 29,
16
+ "b": 19,
17
+ "c": 8,
18
+ "d": 2,
19
+ "e": 11,
20
+ "f": 20,
21
+ "g": 14,
22
+ "h": 37,
23
+ "i": 22,
24
+ "j": 4,
25
+ "k": 10,
26
+ "l": 5,
27
+ "m": 1,
28
+ "n": 32,
29
+ "o": 25,
30
+ "p": 12,
31
+ "q": 33,
32
+ "r": 3,
33
+ "s": 6,
34
+ "t": 26,
35
+ "u": 15,
36
+ "v": 21,
37
+ "w": 16,
38
+ "y": 30,
39
+ "z": 28,
40
+ "ʼ": 35
41
+ }