Model save
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: llama-1b-yelp-5
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# llama-1b-yelp-5
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.2241
|
25 |
+
- Accuracy: 0.4791
|
26 |
+
- Precision: 0.4724
|
27 |
+
- Recall: 0.4769
|
28 |
+
- F1: 0.4736
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0002
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 128
|
53 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_steps: 100
|
56 |
+
- num_epochs: 3
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| No log | 0.2559 | 100 | 1.6861 | 0.3415 | 0.3301 | 0.3398 | 0.3321 |
|
63 |
+
| No log | 0.5118 | 200 | 1.4513 | 0.3999 | 0.4029 | 0.3957 | 0.3946 |
|
64 |
+
| No log | 0.7678 | 300 | 1.3685 | 0.4308 | 0.4189 | 0.4296 | 0.4209 |
|
65 |
+
| No log | 1.0230 | 400 | 1.3152 | 0.4474 | 0.4399 | 0.4453 | 0.4403 |
|
66 |
+
| 6.034 | 1.2790 | 500 | 1.2959 | 0.4547 | 0.4483 | 0.4532 | 0.4471 |
|
67 |
+
| 6.034 | 1.5349 | 600 | 1.2663 | 0.4616 | 0.4559 | 0.4593 | 0.4566 |
|
68 |
+
| 6.034 | 1.7908 | 700 | 1.2542 | 0.4674 | 0.4630 | 0.4647 | 0.4626 |
|
69 |
+
| 6.034 | 2.0461 | 800 | 1.2405 | 0.4729 | 0.4673 | 0.4712 | 0.4684 |
|
70 |
+
| 6.034 | 2.3020 | 900 | 1.2371 | 0.4783 | 0.4763 | 0.4777 | 0.4753 |
|
71 |
+
| 4.7846 | 2.5579 | 1000 | 1.2266 | 0.4814 | 0.4741 | 0.4803 | 0.4762 |
|
72 |
+
| 4.7846 | 2.8138 | 1100 | 1.2241 | 0.4791 | 0.4724 | 0.4769 | 0.4736 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- PEFT 0.14.0
|
78 |
+
- Transformers 4.47.1
|
79 |
+
- Pytorch 2.5.1+cu124
|
80 |
+
- Datasets 3.2.0
|
81 |
+
- Tokenizers 0.21.0
|