--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Wer: 0.1246 - Cer: 0.0482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.0068 | 0.9801 | 37 | 0.0068 | 0.1158 | 0.0383 | | 0.0071 | 1.9801 | 74 | 0.0067 | 0.1171 | 0.0394 | | 0.0076 | 2.9801 | 111 | 0.0067 | 0.1222 | 0.0430 | | 0.0062 | 3.9801 | 148 | 0.0067 | 0.1258 | 0.0409 | | 0.005 | 4.9801 | 185 | 0.0068 | 0.1254 | 0.0406 | | 0.0042 | 5.9801 | 222 | 0.0068 | 0.1242 | 0.0417 | | 0.0055 | 6.9801 | 259 | 0.0070 | 0.1258 | 0.0425 | | 0.0049 | 7.9801 | 296 | 0.0071 | 0.1240 | 0.0394 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0